Cargando…
A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis
Visual analysis of complex fish habitats is an important step towards sustainable fisheries for human consumption and environmental protection. Deep Learning methods have shown great promise for scene analysis when trained on large-scale datasets. However, current datasets for fish analysis tend to...
Autores principales: | Saleh, Alzayat, Laradji, Issam H., Konovalov, Dmitry A., Bradley, Michael, Vazquez, David, Sheaves, Marcus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473859/ https://www.ncbi.nlm.nih.gov/pubmed/32887922 http://dx.doi.org/10.1038/s41598-020-71639-x |
Ejemplares similares
-
Weakly supervised underwater fish segmentation using affinity LCFCN
por: Laradji, Issam H., et al.
Publicado: (2021) -
An underwater observation dataset for fish classification and fishery assessment
por: McCann, Erin, et al.
Publicado: (2018) -
KOSMOS: An Open Source Underwater Video Lander for Monitoring Coastal Fishes and Habitats
por: Pelletier, Dominique, et al.
Publicado: (2021) -
Underwater Fish Segmentation Algorithm Based on Improved PSPNet Network
por: Han, Yanling, et al.
Publicado: (2023) -
How many fish? Comparison of two underwater visual sampling methods for monitoring fish communities
por: Thanopoulou, Zoi, et al.
Publicado: (2018)