Cargando…
Composite learning sliding mode synchronization of chaotic fractional-order neural networks
In this work, a sliding mode control (SMC) method and a composite learning SMC (CLSMC) method are proposed to solve the synchronization problem of chaotic fractional-order neural networks (FONNs). A sliding mode surface and an adaptive law are constructed to update parameter estimation. The SMC ensu...
Autores principales: | Han, Zhimin, Li, Shenggang, Liu, Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474211/ https://www.ncbi.nlm.nih.gov/pubmed/32922977 http://dx.doi.org/10.1016/j.jare.2020.04.006 |
Ejemplares similares
-
Fractional order control and synchronization of chaotic systems
por: Azar, Ahmad, et al.
Publicado: (2017) -
Learning-based sliding mode synchronization for fractional-order Hindmarsh-Rose neuronal models with deterministic learning
por: Chen, Danfeng, et al.
Publicado: (2023) -
Synchronization of Fractional-Order Complex Chaotic Systems Based on Observers
por: Li, Zhonghui, et al.
Publicado: (2019) -
Optimization of fractional-order chaotic cellular neural networks by metaheuristics
por: Tlelo-Cuautle, Esteban, et al.
Publicado: (2022) -
Neural Network Command Filtered Control of Fractional-Order Chaotic Systems
por: Zhang, Hua
Publicado: (2021)