Cargando…

New fractional-order shifted Gegenbauer moments for image analysis and recognition

Orthogonal moments are used to represent digital images with minimum redundancy. Orthogonal moments with fractional-orders show better capabilities in digital image analysis than integer-order moments. In this work, the authors present new fractional-order shifted Gegenbauer polynomials. These new p...

Descripción completa

Detalles Bibliográficos
Autores principales: Hosny, Khalid M., Darwish, Mohamed M., Eltoukhy, Mohamed Meselhy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474242/
https://www.ncbi.nlm.nih.gov/pubmed/32922974
http://dx.doi.org/10.1016/j.jare.2020.05.024
Descripción
Sumario:Orthogonal moments are used to represent digital images with minimum redundancy. Orthogonal moments with fractional-orders show better capabilities in digital image analysis than integer-order moments. In this work, the authors present new fractional-order shifted Gegenbauer polynomials. These new polynomials are used to define a novel set of orthogonal fractional-order shifted Gegenbauer moments (FrSGMs). The proposed method is applied in gray-scale image analysis and recognition. The invariances to rotation, scaling and translation (RST), are achieved using invariant fractional-order geometric moments. Experiments are conducted to evaluate the proposed FrSGMs and compare with the classical orthogonal integer-order Gegenbauer moments (GMs) and the existing orthogonal fractional-order moments. The new FrSGMs outperformed GMs and the existing orthogonal fractional-order moments in terms of image recognition and reconstruction, RST invariance, and robustness to noise.