Cargando…
XFinger-Net: Pixel-Wise Segmentation Method for Partially Defective Fingerprint Based on Attention Gates and U-Net
Partially defective fingerprint image (PDFI) with poor performance poses challenges to the automated fingerprint identification system (AFIS). To improve the quality and the performance rate of PDFI, it is essential to use accurate segmentation. Currently, most fingerprint image segmentations use me...
Autores principales: | Wan, Guo Chun, Li, Meng Meng, Xu, He, Kang, Wen Hao, Rui, Jin Wen, Tong, Mei Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474422/ https://www.ncbi.nlm.nih.gov/pubmed/32785159 http://dx.doi.org/10.3390/s20164473 |
Ejemplares similares
-
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
por: Tong, Xiaozhong, et al.
Publicado: (2021) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies
por: Hitziger, Sebastian, et al.
Publicado: (2022) -
APU-Net: An Attention Mechanism Parallel U-Net for Lung Tumor Segmentation
por: Zhou, Tao, et al.
Publicado: (2022)