Cargando…
Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network
As an important paradigm of spontaneous brain-computer interfaces (BCIs), motor imagery (MI) has been widely used in the fields of neurological rehabilitation and robot control. Recently, researchers have proposed various methods for feature extraction and classification based on MI signals. The dec...
Autores principales: | Zhang, Kai, Xu, Guanghua, Han, Zezhen, Ma, Kaiquan, Zheng, Xiaowei, Chen, Longting, Duan, Nan, Zhang, Sicong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474427/ https://www.ncbi.nlm.nih.gov/pubmed/32796607 http://dx.doi.org/10.3390/s20164485 |
Ejemplares similares
-
Instance Transfer Subject-Dependent Strategy for Motor Imagery Signal Classification Using Deep Convolutional Neural Networks
por: Zhang, Kai, et al.
Publicado: (2020) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023) -
Motor Imagery Classification for Brain Computer Interface Using Deep Convolutional Neural Networks and Mixup Augmentation
Publicado: (2022) -
Robust Motor Imagery Tasks Classification Approach Using Bayesian Neural Network
por: Milanés-Hermosilla, Daily, et al.
Publicado: (2023) -
Relevant Feature Integration and Extraction for Single-Trial Motor Imagery Classification
por: Li, Lili, et al.
Publicado: (2017)