Cargando…

mRNA adenosine methylase (MTA) deposits m(6)A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana

In Arabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introduces N(6)-methyladenosine (m(6)A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that an MTA-deficient mutant (mta) has decreased levels of microRNAs (miRNAs) but accumulates primary m...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhat, Susheel Sagar, Bielewicz, Dawid, Gulanicz, Tomasz, Bodi, Zsuzsanna, Yu, Xiang, Anderson, Stephen J., Szewc, Lukasz, Bajczyk, Mateusz, Dolata, Jakub, Grzelak, Natalia, Smolinski, Dariusz J., Gregory, Brian D., Fray, Rupert G., Jarmolowski, Artur, Szweykowska-Kulinska, Zofia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474595/
https://www.ncbi.nlm.nih.gov/pubmed/32817553
http://dx.doi.org/10.1073/pnas.2003733117
Descripción
Sumario:In Arabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introduces N(6)-methyladenosine (m(6)A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that an MTA-deficient mutant (mta) has decreased levels of microRNAs (miRNAs) but accumulates primary miRNA transcripts (pri-miRNAs). Moreover, pri-miRNAs are methylated by MTA, and RNA structure probing analysis reveals a decrease in secondary structure within stem–loop regions of these transcripts in mta mutant plants. We demonstrate interaction between MTA and both RNA Polymerase II and TOUGH (TGH), a plant protein needed for early steps of miRNA biogenesis. Both MTA and TGH are necessary for efficient colocalization of the Microprocessor components Dicer-like 1 (DCL1) and Hyponastic Leaves 1 (HYL1) with RNA Polymerase II. We propose that secondary structure of miRNA precursors induced by their MTA-dependent m(6)A methylation status, together with direct interactions between MTA and TGH, influence the recruitment of Microprocessor to plant pri-miRNAs. Therefore, the lack of MTA in mta mutant plants disturbs pri-miRNA processing and leads to the decrease in miRNA accumulation. Furthermore, our findings reveal that reduced miR393b levels likely contributes to the impaired auxin response phenotypes of mta mutant plants.