Cargando…
Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis
BACKGROUND: Aquaporin-2 (AQP2) is a key water channel protein which determines the water permeability of the collecting duct. Multiple phosphorylation sites are present at the C-terminal of AQP2 including S256 (serine at 256 residue), S261, S264 and S/T269, which are regulated by vasopressin (VP) to...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474712/ https://www.ncbi.nlm.nih.gov/pubmed/32529500 http://dx.doi.org/10.1007/s10157-020-01899-4 |
_version_ | 1783579373112131584 |
---|---|
author | Sakai, Masaki Yamamoto, Keiko Mizumura, Hiroaki Matsumoto, Tomoki Tanaka, Yasuko Noda, Yumi Ishibashi, Kenichi Yamamoto, Tadashi Sasaki, Sei |
author_facet | Sakai, Masaki Yamamoto, Keiko Mizumura, Hiroaki Matsumoto, Tomoki Tanaka, Yasuko Noda, Yumi Ishibashi, Kenichi Yamamoto, Tadashi Sasaki, Sei |
author_sort | Sakai, Masaki |
collection | PubMed |
description | BACKGROUND: Aquaporin-2 (AQP2) is a key water channel protein which determines the water permeability of the collecting duct. Multiple phosphorylation sites are present at the C-terminal of AQP2 including S256 (serine at 256 residue), S261, S264 and S/T269, which are regulated by vasopressin (VP) to modulate AQP2 trafficking. As the dynamics of these phosphorylations have been studied mostly in rodents, little is known about the phosphorylation of human AQP2 which has unique T269 in the place of S269 of rodent AQP2. Because AQP2 is excreted in urinary exosomes, the phosphoprotein profile of human AQP2 can be easily examined through urinary exosomes without any intervention. METHODS: Human urinary exosomes digested with trypsin or glutamyl endopeptidase (Glu-C) were examined by the liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) phosphoproteomic analysis. RESULTS: The most dominant phosphorylated AQP2 peptide identified was S256 phosphorylated form (pS256), followed by pS261 with less pS264 and far less pT269, which was confirmed by the western blot analyses using phosphorylated AQP2-specific antibodies. In a patient lacking circulating VP, administration of a VP analogue showed a transient increase (peak at 30–60 min) in excretion of exosomes with pS261 AQP2. CONCLUSION: These data suggest that all phosphorylation sites of human AQP2 including T269 are phosphorylated and phosphorylations at S256 and S261 may play a dominant role in the urinary exosomal excretion of AQP2. |
format | Online Article Text |
id | pubmed-7474712 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-74747122020-09-16 Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis Sakai, Masaki Yamamoto, Keiko Mizumura, Hiroaki Matsumoto, Tomoki Tanaka, Yasuko Noda, Yumi Ishibashi, Kenichi Yamamoto, Tadashi Sasaki, Sei Clin Exp Nephrol Original Article BACKGROUND: Aquaporin-2 (AQP2) is a key water channel protein which determines the water permeability of the collecting duct. Multiple phosphorylation sites are present at the C-terminal of AQP2 including S256 (serine at 256 residue), S261, S264 and S/T269, which are regulated by vasopressin (VP) to modulate AQP2 trafficking. As the dynamics of these phosphorylations have been studied mostly in rodents, little is known about the phosphorylation of human AQP2 which has unique T269 in the place of S269 of rodent AQP2. Because AQP2 is excreted in urinary exosomes, the phosphoprotein profile of human AQP2 can be easily examined through urinary exosomes without any intervention. METHODS: Human urinary exosomes digested with trypsin or glutamyl endopeptidase (Glu-C) were examined by the liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) phosphoproteomic analysis. RESULTS: The most dominant phosphorylated AQP2 peptide identified was S256 phosphorylated form (pS256), followed by pS261 with less pS264 and far less pT269, which was confirmed by the western blot analyses using phosphorylated AQP2-specific antibodies. In a patient lacking circulating VP, administration of a VP analogue showed a transient increase (peak at 30–60 min) in excretion of exosomes with pS261 AQP2. CONCLUSION: These data suggest that all phosphorylation sites of human AQP2 including T269 are phosphorylated and phosphorylations at S256 and S261 may play a dominant role in the urinary exosomal excretion of AQP2. Springer Singapore 2020-06-11 2020 /pmc/articles/PMC7474712/ /pubmed/32529500 http://dx.doi.org/10.1007/s10157-020-01899-4 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Article Sakai, Masaki Yamamoto, Keiko Mizumura, Hiroaki Matsumoto, Tomoki Tanaka, Yasuko Noda, Yumi Ishibashi, Kenichi Yamamoto, Tadashi Sasaki, Sei Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis |
title | Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis |
title_full | Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis |
title_fullStr | Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis |
title_full_unstemmed | Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis |
title_short | Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis |
title_sort | phosphorylation profile of human aqp2 in urinary exosomes by lc–ms/ms phosphoproteomic analysis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474712/ https://www.ncbi.nlm.nih.gov/pubmed/32529500 http://dx.doi.org/10.1007/s10157-020-01899-4 |
work_keys_str_mv | AT sakaimasaki phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis AT yamamotokeiko phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis AT mizumurahiroaki phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis AT matsumototomoki phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis AT tanakayasuko phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis AT nodayumi phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis AT ishibashikenichi phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis AT yamamototadashi phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis AT sasakisei phosphorylationprofileofhumanaqp2inurinaryexosomesbylcmsmsphosphoproteomicanalysis |