Cargando…
Instance Transfer Subject-Dependent Strategy for Motor Imagery Signal Classification Using Deep Convolutional Neural Networks
In the process of brain-computer interface (BCI), variations across sessions/subjects result in differences in the properties of potential of the brain. This issue may lead to variations in feature distribution of electroencephalogram (EEG) across subjects, which greatly reduces the generalization a...
Autores principales: | Zhang, Kai, Xu, Guanghua, Chen, Longtin, Tian, Peiyuan, Han, ChengCheng, Zhang, Sicong, Duan, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474754/ https://www.ncbi.nlm.nih.gov/pubmed/32908576 http://dx.doi.org/10.1155/2020/1683013 |
Ejemplares similares
-
Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network
por: Zhang, Kai, et al.
Publicado: (2020) -
Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer
por: Wang, Ximiao, et al.
Publicado: (2023) -
Temporal-frequency-phase feature classification using 3D-convolutional neural networks for motor imagery and movement
por: Fan, Chengcheng, et al.
Publicado: (2023) -
Motor Imagery EEG Classification Based on Transfer Learning and Multi-Scale Convolution Network
por: Chang, Zhanyuan, et al.
Publicado: (2022) -
Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification
por: Collazos-Huertas, Diego, et al.
Publicado: (2020)