Cargando…
Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties
This research aimed to explore the eco-friendly green synthesis of copper nanoparticles (CuNPs) using Celastrus paniculatus leaves extract. Primarily, the biosynthesized CuNPs characterized by UV–vis spectroscopy showed an absorption peak at 269 nm. Further, The SEM and TEM studies revealed the sphe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475076/ https://www.ncbi.nlm.nih.gov/pubmed/32923378 http://dx.doi.org/10.1016/j.btre.2020.e00518 |
_version_ | 1783579447177248768 |
---|---|
author | Mali, Suresh Chand Dhaka, Anita Githala, Chanda Kumari Trivedi, Rohini |
author_facet | Mali, Suresh Chand Dhaka, Anita Githala, Chanda Kumari Trivedi, Rohini |
author_sort | Mali, Suresh Chand |
collection | PubMed |
description | This research aimed to explore the eco-friendly green synthesis of copper nanoparticles (CuNPs) using Celastrus paniculatus leaves extract. Primarily, the biosynthesized CuNPs characterized by UV–vis spectroscopy showed an absorption peak at 269 nm. Further, The SEM and TEM studies revealed the spherical shape of particles with size ranged between 2−10 nm with an average particle diameter of 5 nm. FT-IR analysis confirmed the presence of functional groups —OH, C[bond, double bond]C and C—H triggers the synthesis of CuNPs. The negative zeta potential -22.2 mV indicated the stability of CuNPs was confirmed by DLS and the composition and purity by EDS studies. Further, the photocatalytic property of the CuNPs was divulged by their methylene blue dye degradation potential. The reaction kinetics followed pseudo-first-order with k-values (rate constant) 0.0172 min(−1). In addition, this material was found to be a good antifungal agent against plant pathogenic fungi Fusarium oxysporum showed 76.29 ± 1.52 maximum mycelial inhibition. |
format | Online Article Text |
id | pubmed-7475076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-74750762020-09-11 Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties Mali, Suresh Chand Dhaka, Anita Githala, Chanda Kumari Trivedi, Rohini Biotechnol Rep (Amst) Research Article This research aimed to explore the eco-friendly green synthesis of copper nanoparticles (CuNPs) using Celastrus paniculatus leaves extract. Primarily, the biosynthesized CuNPs characterized by UV–vis spectroscopy showed an absorption peak at 269 nm. Further, The SEM and TEM studies revealed the spherical shape of particles with size ranged between 2−10 nm with an average particle diameter of 5 nm. FT-IR analysis confirmed the presence of functional groups —OH, C[bond, double bond]C and C—H triggers the synthesis of CuNPs. The negative zeta potential -22.2 mV indicated the stability of CuNPs was confirmed by DLS and the composition and purity by EDS studies. Further, the photocatalytic property of the CuNPs was divulged by their methylene blue dye degradation potential. The reaction kinetics followed pseudo-first-order with k-values (rate constant) 0.0172 min(−1). In addition, this material was found to be a good antifungal agent against plant pathogenic fungi Fusarium oxysporum showed 76.29 ± 1.52 maximum mycelial inhibition. Elsevier 2020-08-11 /pmc/articles/PMC7475076/ /pubmed/32923378 http://dx.doi.org/10.1016/j.btre.2020.e00518 Text en © 2020 Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Mali, Suresh Chand Dhaka, Anita Githala, Chanda Kumari Trivedi, Rohini Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties |
title | Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties |
title_full | Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties |
title_fullStr | Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties |
title_full_unstemmed | Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties |
title_short | Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties |
title_sort | green synthesis of copper nanoparticles using celastrus paniculatus willd. leaf extract and their photocatalytic and antifungal properties |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475076/ https://www.ncbi.nlm.nih.gov/pubmed/32923378 http://dx.doi.org/10.1016/j.btre.2020.e00518 |
work_keys_str_mv | AT malisureshchand greensynthesisofcoppernanoparticlesusingcelastruspaniculatuswilldleafextractandtheirphotocatalyticandantifungalproperties AT dhakaanita greensynthesisofcoppernanoparticlesusingcelastruspaniculatuswilldleafextractandtheirphotocatalyticandantifungalproperties AT githalachandakumari greensynthesisofcoppernanoparticlesusingcelastruspaniculatuswilldleafextractandtheirphotocatalyticandantifungalproperties AT trivedirohini greensynthesisofcoppernanoparticlesusingcelastruspaniculatuswilldleafextractandtheirphotocatalyticandantifungalproperties |