Cargando…
Dissociation between airway and systemic autoantibody responses in chronic obstructive pulmonary disease
BACKGROUND: Autoimmune processes have been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the relationship between airway and systemic autoantibody responses remains unclear. The aim of this study was to elucidate this relationship in patients with stable CO...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475442/ https://www.ncbi.nlm.nih.gov/pubmed/32953718 http://dx.doi.org/10.21037/atm-20-944 |
Sumario: | BACKGROUND: Autoimmune processes have been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the relationship between airway and systemic autoantibody responses remains unclear. The aim of this study was to elucidate this relationship in patients with stable COPD by investigating the correlation patterns between sputum and serum autoantibodies. METHODS: In this cross-sectional study, sputum supernatant and serum obtained from 47 patients with stable COPD were assayed for the presence of IgG antibodies against ten autoantigens: Smith antigen (Sm), ribosomal phosphoprotein P0 (P0), Ro/Sjögren syndrome type A antigen (Ro/SSA), La/Sjögren syndrome type B antigen (La/SSB), DNA topoisomerase I (Scl-70), histidyl-tRNA synthetase (Jo-1), U1 small nuclear ribonucleoprotein (U1-SnRNP), thyroid peroxidase (TPO), proteinase-3 (PR3), and myeloperoxidase (MPO). A second cohort of 55 stable COPD patients was recruited for validation, and a group of 59 non-COPD controls and a group of 20 connective-tissue disease-associated interstitial lung disease (CTD-ILD) patients were also recruited for comparison. Hierarchical clustering and network analysis were used to evaluate the correlation patterns between sputum and serum autoantibody profiles. RESULTS: Both hierarchical clustering and network analysis showed that sputum and serum autoantibody profiles were distinct in either analytic COPD cohort or validation cohort. In contrast, the autoantibodies of the two compartments in non-COPD controls and CTD-ILD patients were inadequately distinguished using either hierarchical clustering or network analysis. Many autoantibodies in the sputum were found to have significant correlations with lung function, symptom score and frequency of prior exacerbations in COPD patients, but the antibodies in the serum were not. CONCLUSIONS: We observed a dissociation between sputum autoantibodies and serum autoantibodies in patients with stable COPD, suggesting that airway and systemic immune status may play very different roles in the disease. Sputum autoantibodies are more clinically relevant than serum autoantibodies. Focusing on airway autoimmunity may help improve understanding of the immunopathological mechanism of COPD. |
---|