Cargando…
2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements
This paper shows how 2D digital image correlation (2D DIC) and region-based convolutional neural network (R-CNN) can be combined for image-based automated monitoring and assessment of surface crack development of concrete structural elements during laboratory quasi-static tests. In the presented app...
Autores principales: | Słoński, Marek, Tekieli, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475812/ https://www.ncbi.nlm.nih.gov/pubmed/32785087 http://dx.doi.org/10.3390/ma13163527 |
Ejemplares similares
-
Detection of Flaws in Concrete Using Ultrasonic Tomography and Convolutional Neural Networks
por: Słoński, Marek, et al.
Publicado: (2020) -
Learning to Detect Cracks on Damaged Concrete Surfaces Using Two-Branched Convolutional Neural Network
por: Lee, Jieun, et al.
Publicado: (2019) -
Feasibility Study of Digital Image Correlation in Determining Strains in Concrete Exposed to Fire
por: Mróz, Katarzyna, et al.
Publicado: (2020) -
2D Digital Reconstruction of Asphalt Concrete Microstructure for Numerical Modeling Purposes
por: Klimczak, Marek, et al.
Publicado: (2022) -
Flexible Adhesive in Composite-to-Brick Strengthening—Experimental and Numerical Study
por: Kwiecień, Arkadiusz, et al.
Publicado: (2018)