Cargando…
Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al–Li Alloy Aircraft Fuselage Panel
The aim of this work was to study the buckling behavior and failure mode of the double-sided laser-welded Al–Li alloy panel structure under the effect of axial compression via experimental and numerical simulation methods. In the test, multi-frequency fringe projection profilometry was used to monit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475844/ https://www.ncbi.nlm.nih.gov/pubmed/32823948 http://dx.doi.org/10.3390/ma13163599 |
_version_ | 1783579597704527872 |
---|---|
author | Zhang, Yunlong Tao, Wang Chen, Yanbin Lei, Zhenkun Bai, Ruixiang Lei, Zhenglong |
author_facet | Zhang, Yunlong Tao, Wang Chen, Yanbin Lei, Zhenkun Bai, Ruixiang Lei, Zhenglong |
author_sort | Zhang, Yunlong |
collection | PubMed |
description | The aim of this work was to study the buckling behavior and failure mode of the double-sided laser-welded Al–Li alloy panel structure under the effect of axial compression via experimental and numerical simulation methods. In the test, multi-frequency fringe projection profilometry was used to monitor the out-of-plane displacement of the laser-welded panel structure during the axial compression load. In addition, the in-plane deformation was precisely monitored via strain gauge and strain rosette. The basic principles of fringe projection profilometry were introduced, and how to use fringe projection profilometry to obtain out-of-plane displacement was also presented. Numerical simulations were performed using the finite element method (FEM) to predict the failure load and buckling modes of the laser-welded panel structure under axial compression, and the obtained results were compared with those of the experiment. It was found that the fringe projection profilometry method for monitoring the buckling deformation of the laser-welded structure was verified to be effective in terms of a measurement accuracy of sub-millimeter level. The structural failure was caused by local buckling of the skin. The observed failure modes such as local buckling of the skin, bending deformation of the stringers, continuous fracture of several welds, and failure of local strength and stiffness were attributed to the deformed laser-welded panel structure under the axial compression. The predicted failure load in the numerical simulation was slightly smaller than that of the experimental test, and the error of the simulation result relative to the test result was −2.7%. The difference between them might be due to the fact that the boundary and loading conditions used in the FEM model could not be completely consistent with those used in the actual experiment. |
format | Online Article Text |
id | pubmed-7475844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74758442020-09-17 Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al–Li Alloy Aircraft Fuselage Panel Zhang, Yunlong Tao, Wang Chen, Yanbin Lei, Zhenkun Bai, Ruixiang Lei, Zhenglong Materials (Basel) Article The aim of this work was to study the buckling behavior and failure mode of the double-sided laser-welded Al–Li alloy panel structure under the effect of axial compression via experimental and numerical simulation methods. In the test, multi-frequency fringe projection profilometry was used to monitor the out-of-plane displacement of the laser-welded panel structure during the axial compression load. In addition, the in-plane deformation was precisely monitored via strain gauge and strain rosette. The basic principles of fringe projection profilometry were introduced, and how to use fringe projection profilometry to obtain out-of-plane displacement was also presented. Numerical simulations were performed using the finite element method (FEM) to predict the failure load and buckling modes of the laser-welded panel structure under axial compression, and the obtained results were compared with those of the experiment. It was found that the fringe projection profilometry method for monitoring the buckling deformation of the laser-welded structure was verified to be effective in terms of a measurement accuracy of sub-millimeter level. The structural failure was caused by local buckling of the skin. The observed failure modes such as local buckling of the skin, bending deformation of the stringers, continuous fracture of several welds, and failure of local strength and stiffness were attributed to the deformed laser-welded panel structure under the axial compression. The predicted failure load in the numerical simulation was slightly smaller than that of the experimental test, and the error of the simulation result relative to the test result was −2.7%. The difference between them might be due to the fact that the boundary and loading conditions used in the FEM model could not be completely consistent with those used in the actual experiment. MDPI 2020-08-14 /pmc/articles/PMC7475844/ /pubmed/32823948 http://dx.doi.org/10.3390/ma13163599 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yunlong Tao, Wang Chen, Yanbin Lei, Zhenkun Bai, Ruixiang Lei, Zhenglong Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al–Li Alloy Aircraft Fuselage Panel |
title | Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al–Li Alloy Aircraft Fuselage Panel |
title_full | Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al–Li Alloy Aircraft Fuselage Panel |
title_fullStr | Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al–Li Alloy Aircraft Fuselage Panel |
title_full_unstemmed | Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al–Li Alloy Aircraft Fuselage Panel |
title_short | Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al–Li Alloy Aircraft Fuselage Panel |
title_sort | experiment and numerical simulation for the compressive buckling behavior of double-sided laser-welded al–li alloy aircraft fuselage panel |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475844/ https://www.ncbi.nlm.nih.gov/pubmed/32823948 http://dx.doi.org/10.3390/ma13163599 |
work_keys_str_mv | AT zhangyunlong experimentandnumericalsimulationforthecompressivebucklingbehaviorofdoublesidedlaserweldedallialloyaircraftfuselagepanel AT taowang experimentandnumericalsimulationforthecompressivebucklingbehaviorofdoublesidedlaserweldedallialloyaircraftfuselagepanel AT chenyanbin experimentandnumericalsimulationforthecompressivebucklingbehaviorofdoublesidedlaserweldedallialloyaircraftfuselagepanel AT leizhenkun experimentandnumericalsimulationforthecompressivebucklingbehaviorofdoublesidedlaserweldedallialloyaircraftfuselagepanel AT bairuixiang experimentandnumericalsimulationforthecompressivebucklingbehaviorofdoublesidedlaserweldedallialloyaircraftfuselagepanel AT leizhenglong experimentandnumericalsimulationforthecompressivebucklingbehaviorofdoublesidedlaserweldedallialloyaircraftfuselagepanel |