Cargando…
Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach
The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475873/ https://www.ncbi.nlm.nih.gov/pubmed/32823912 http://dx.doi.org/10.3390/ma13163596 |
_version_ | 1783579604465745920 |
---|---|
author | Jaleel, Zaroug Zhou, Shun Martín-Moldes, Zaira Baugh, Lauren M. Yeh, Jonathan Dinjaski, Nina Brown, Laura T. Garb, Jessica E. Kaplan, David L. |
author_facet | Jaleel, Zaroug Zhou, Shun Martín-Moldes, Zaira Baugh, Lauren M. Yeh, Jonathan Dinjaski, Nina Brown, Laura T. Garb, Jessica E. Kaplan, David L. |
author_sort | Jaleel, Zaroug |
collection | PubMed |
description | The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of β-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of β-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties. |
format | Online Article Text |
id | pubmed-7475873 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74758732020-09-17 Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach Jaleel, Zaroug Zhou, Shun Martín-Moldes, Zaira Baugh, Lauren M. Yeh, Jonathan Dinjaski, Nina Brown, Laura T. Garb, Jessica E. Kaplan, David L. Materials (Basel) Article The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of β-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of β-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties. MDPI 2020-08-14 /pmc/articles/PMC7475873/ /pubmed/32823912 http://dx.doi.org/10.3390/ma13163596 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jaleel, Zaroug Zhou, Shun Martín-Moldes, Zaira Baugh, Lauren M. Yeh, Jonathan Dinjaski, Nina Brown, Laura T. Garb, Jessica E. Kaplan, David L. Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach |
title | Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach |
title_full | Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach |
title_fullStr | Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach |
title_full_unstemmed | Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach |
title_short | Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach |
title_sort | expanding canonical spider silk properties through a dna combinatorial approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475873/ https://www.ncbi.nlm.nih.gov/pubmed/32823912 http://dx.doi.org/10.3390/ma13163596 |
work_keys_str_mv | AT jaleelzaroug expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach AT zhoushun expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach AT martinmoldeszaira expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach AT baughlaurenm expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach AT yehjonathan expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach AT dinjaskinina expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach AT brownlaurat expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach AT garbjessicae expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach AT kaplandavidl expandingcanonicalspidersilkpropertiesthroughadnacombinatorialapproach |