Cargando…
Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments
To avoid failures due to hydrogen embrittlement, it is important to know the amount of hydrogen absorbed by certain steel grades under service conditions. When a critical hydrogen content is reached, the material properties begin to deteriorate. The hydrogen uptake and embrittlement of three differe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475878/ https://www.ncbi.nlm.nih.gov/pubmed/32824015 http://dx.doi.org/10.3390/ma13163604 |
_version_ | 1783579605612888064 |
---|---|
author | Trautmann, Anton Mori, Gregor Oberndorfer, Markus Bauer, Stephan Holzer, Christoph Dittmann, Christoph |
author_facet | Trautmann, Anton Mori, Gregor Oberndorfer, Markus Bauer, Stephan Holzer, Christoph Dittmann, Christoph |
author_sort | Trautmann, Anton |
collection | PubMed |
description | To avoid failures due to hydrogen embrittlement, it is important to know the amount of hydrogen absorbed by certain steel grades under service conditions. When a critical hydrogen content is reached, the material properties begin to deteriorate. The hydrogen uptake and embrittlement of three different carbon steels (API 5CT L80 Type 1, P110 and 42CrMo4) was investigated in autoclave tests with hydrogen gas (H(2)) at elevated pressure and in ambient pressure tests with hydrogen sulfide (H(2)S). H(2) gas with a pressure of up to 100 bar resulted in an overall low but still detectable hydrogen absorption, which did not cause any substantial hydrogen embrittlement in specimens under a constant load of 90% of the specified minimum yield strength (SMYS). The amount of hydrogen absorbed under conditions with H(2)S was approximately one order of magnitude larger than under conditions with H(2) gas. The high hydrogen content led to failures of the 42CrMo4 and P110 specimens. |
format | Online Article Text |
id | pubmed-7475878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74758782020-09-17 Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments Trautmann, Anton Mori, Gregor Oberndorfer, Markus Bauer, Stephan Holzer, Christoph Dittmann, Christoph Materials (Basel) Article To avoid failures due to hydrogen embrittlement, it is important to know the amount of hydrogen absorbed by certain steel grades under service conditions. When a critical hydrogen content is reached, the material properties begin to deteriorate. The hydrogen uptake and embrittlement of three different carbon steels (API 5CT L80 Type 1, P110 and 42CrMo4) was investigated in autoclave tests with hydrogen gas (H(2)) at elevated pressure and in ambient pressure tests with hydrogen sulfide (H(2)S). H(2) gas with a pressure of up to 100 bar resulted in an overall low but still detectable hydrogen absorption, which did not cause any substantial hydrogen embrittlement in specimens under a constant load of 90% of the specified minimum yield strength (SMYS). The amount of hydrogen absorbed under conditions with H(2)S was approximately one order of magnitude larger than under conditions with H(2) gas. The high hydrogen content led to failures of the 42CrMo4 and P110 specimens. MDPI 2020-08-14 /pmc/articles/PMC7475878/ /pubmed/32824015 http://dx.doi.org/10.3390/ma13163604 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Trautmann, Anton Mori, Gregor Oberndorfer, Markus Bauer, Stephan Holzer, Christoph Dittmann, Christoph Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments |
title | Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments |
title_full | Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments |
title_fullStr | Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments |
title_full_unstemmed | Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments |
title_short | Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments |
title_sort | hydrogen uptake and embrittlement of carbon steels in various environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475878/ https://www.ncbi.nlm.nih.gov/pubmed/32824015 http://dx.doi.org/10.3390/ma13163604 |
work_keys_str_mv | AT trautmannanton hydrogenuptakeandembrittlementofcarbonsteelsinvariousenvironments AT morigregor hydrogenuptakeandembrittlementofcarbonsteelsinvariousenvironments AT oberndorfermarkus hydrogenuptakeandembrittlementofcarbonsteelsinvariousenvironments AT bauerstephan hydrogenuptakeandembrittlementofcarbonsteelsinvariousenvironments AT holzerchristoph hydrogenuptakeandembrittlementofcarbonsteelsinvariousenvironments AT dittmannchristoph hydrogenuptakeandembrittlementofcarbonsteelsinvariousenvironments |