Cargando…

Additive Re-Manufacturing of Mechanically Recycled End-of-Life Glass Fiber-Reinforced Polymers for Value-Added Circular Design

Despite the large use of composites for industrial applications, their end-of-life management is still an open issue for manufacturing, especially in the wind energy sector. Additive manufacturing technology has been emerging as a solution, enhancing circular economy models, and using recycled compo...

Descripción completa

Detalles Bibliográficos
Autores principales: Romani, Alessia, Mantelli, Andrea, Suriano, Raffaella, Levi, Marinella, Turri, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7476045/
https://www.ncbi.nlm.nih.gov/pubmed/32796697
http://dx.doi.org/10.3390/ma13163545
Descripción
Sumario:Despite the large use of composites for industrial applications, their end-of-life management is still an open issue for manufacturing, especially in the wind energy sector. Additive manufacturing technology has been emerging as a solution, enhancing circular economy models, and using recycled composites for glass fiber-reinforced polymers is spreading as a new additive manufacturing trend. Nevertheless, their mechanical properties are still not comparable to pristine materials. The purpose of this paper is to examine the additive re-manufacturing of end-of-life glass fiber composites with mechanical performances that are comparable to virgin glass fiber-reinforced materials. Through a systematic characterization of the recyclate, requirements of the filler for the liquid deposition modeling process were identified. Printability and material surface quality of different formulations were analyzed using a low-cost modified 3D printer. Two hypothetical design concepts were also manufactured to validate the field of application. Furthermore, an understanding of the mechanical behavior was accomplished by means of tensile tests, and the results were compared with a benchmark formulation with virgin glass fibers. Mechanically recycled glass fibers show the capability to substitute pristine fillers, unlocking their use for new fields of application.