Cargando…
Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach
The empirical modeling methods are widely used in corrosion behavior analysis. But due to the limited regression ability of conventional algorithms, modeling objects are often limited to individual factors and specific environments. This study proposed a modeling method based on machine learning to...
Autores principales: | Yan, Luchun, Diao, Yupeng, Lang, Zhaoyang, Gao, Kewei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7476538/ https://www.ncbi.nlm.nih.gov/pubmed/32939161 http://dx.doi.org/10.1080/14686996.2020.1746196 |
Ejemplares similares
-
Analysis of Environmental Factors Affecting the Atmospheric Corrosion Rate of Low-Alloy Steel Using Random Forest-Based Models
por: Yan, Luchun, et al.
Publicado: (2020) -
Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools
por: Bulgarevich, Dmitry S., et al.
Publicado: (2019) -
Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning
por: Wang, Xin, et al.
Publicado: (2020) -
Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys
por: Gorsse, Stéphane, et al.
Publicado: (2017) -
Gigacycle fatigue in high strength steels
por: Furuya, Yoshiyuki, et al.
Publicado: (2019)