Cargando…

MYC‐activated lncRNA HNF1A‐AS1 overexpression facilitates glioma progression via cooperating with miR‐32‐5p/SOX4 axis

Mounting literatures have revealed the crucial effects of long noncoding RNA (lncRNA) in various cancers, including glioma. HNF1A‐AS1, a novel lncRNA, is reported to modulate tumorigenesis and development of multiple cancers. However, the tumorigenic function of lncRNA HNF1A‐AS1 in glioma remains la...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jianheng, Li, Rong, Li, Linfan, Gu, Yimian, Zhan, Hui, Zhou, Changbao, Zhong, Chuanhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7476832/
https://www.ncbi.nlm.nih.gov/pubmed/33448691
http://dx.doi.org/10.1002/cam4.3186
Descripción
Sumario:Mounting literatures have revealed the crucial effects of long noncoding RNA (lncRNA) in various cancers, including glioma. HNF1A‐AS1, a novel lncRNA, is reported to modulate tumorigenesis and development of multiple cancers. However, the tumorigenic function of lncRNA HNF1A‐AS1 in glioma remains largely unknown. quantitative reverse transcription and polymerase chain reaction and western blot assays were applied to evaluate the expression of relevant mRNAs and proteins. 5‐Ethynyl‐2’‐ deoxyuridine, terminal deoxynucleotidyl transferase dUTP nick‐end labeling, flow cytometry, and transwell assays were conducted for examining the influence of HNF1A‐AS1 on glioma cell functions. The relationship among RNAs was investigated by mechanical experiments. The results demonstrated that HNF1A‐AS1 was predominantly highly expressed in glioma cell lines compared with nontumor glial epithelial cell, which was associated with the stimulation of transcription factor myelocytomatosis oncogene. Knockdown of HNF1A‐AS1 remarkably inhibited glioma cells proliferation, migration, and invasion, while accelerating cell apoptosis in vitro. Mechanically, HNF1A‐AS1 served as a miR‐32‐5p sponge. Moreover, SOX4 was discovered as a target of miR‐32‐5p. Inhibited miR‐32‐5p or upregulated SOX4 could markedly counteract the inhibitory effects of silencing HNF1A‐AS1 on glioma malignant biological behaviors. HNF1A‐AS1 exerted oncogenic property in glioma progression via upregulating miR‐32‐5p–mediated SOX4 expression, suggesting potential novel therapeutic target for future glioma treatment.