Cargando…

Clinical assessment of adenosine stress and rest cardiac magnetic resonance T1 mapping for detecting ischemic and infarcted myocardium

Cardiac magnetic resonance (CMR) spin-lattice relaxation time (T1) may be influenced by pathologic conditions due to changes in myocardial water content. We aimed to validate the principle and investigate T1 mapping at rest and adenosine stress to differentiate ischemic and infarcted myocardium from...

Descripción completa

Detalles Bibliográficos
Autores principales: Yimcharoen, Sirilak, Zhang, Shuo, Kaolawanich, Yodying, Tanapibunpon, Prajak, Krittayaphong, Rungroj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477195/
https://www.ncbi.nlm.nih.gov/pubmed/32895408
http://dx.doi.org/10.1038/s41598-020-71722-3
Descripción
Sumario:Cardiac magnetic resonance (CMR) spin-lattice relaxation time (T1) may be influenced by pathologic conditions due to changes in myocardial water content. We aimed to validate the principle and investigate T1 mapping at rest and adenosine stress to differentiate ischemic and infarcted myocardium from controls. Patients with suspected coronary artery disease who underwent CMR were prospectively recruited. Native rest and adenosine stress T1 maps were obtained using standard modified Look-Locker Inversion-Recovery technique. Among 181 patients included, T1 values were measured from three groups. In the control group, 72 patients showed myocardium with a T1 profile of 1,039 ± 75 ms at rest and a significant increase during stress (4.79 ± 3.14%, p < 0.001). While the ischemic (51 patients) and infarcted (58 patients) groups showed elevated resting T1 compared to controls (1,040 ± 90 ms for ischemic; 1,239 ± 121 ms for infarcted, p < 0.001), neither of which presented significant T1 reactivity (1.38 ± 3.02% for ischemic; 1.55 ± 5.25% for infarcted). We concluded that adenosine stress and rest T1 mapping may be useful to differentiate normal, ischemic and infarcted myocardium.