Cargando…

Stem cell therapy for Alzheimer's disease

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xin-Yu, Yang, Lin-Po, Zhao, Lan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477654/
https://www.ncbi.nlm.nih.gov/pubmed/32952859
http://dx.doi.org/10.4252/wjsc.v12.i8.787
Descripción
Sumario:Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell–derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.