Cargando…
A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction
BACKGROUND: With the rapid development of sequencing technologies, collecting diverse types of cancer omics data become more cost-effective. Many computational methods attempted to represent and fuse multiple omics into a comprehensive view of cancer. However, different types of omics are related an...
Autores principales: | Tan, Kaiwen, Huang, Weixian, Hu, Jinlong, Dong, Shoubin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477832/ https://www.ncbi.nlm.nih.gov/pubmed/32646413 http://dx.doi.org/10.1186/s12911-020-1114-3 |
Ejemplares similares
-
Multi-omics integration for neuroblastoma clinical endpoint prediction
por: Francescatto, Margherita, et al.
Publicado: (2018) -
Adversarial Autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process
por: Mendes, Andre, et al.
Publicado: (2020) -
Integrated multi-omics analysis of ovarian cancer using variational autoencoders
por: Hira, Muta Tah, et al.
Publicado: (2021) -
Improved semi-supervised autoencoder for deception detection
por: Fu, Hongliang, et al.
Publicado: (2019) -
Estimating a brain network predictive of stress and genotype with supervised autoencoders
por: Talbot, Austin, et al.
Publicado: (2023)