Cargando…
Adaptive-size dictionary learning using information theoretic criteria for image reconstruction from undersampled k-space data in low field magnetic resonance imaging
BACKGROUND: Magnetic resonance imaging (MRI) is a safe non-invasive and nonionizing medical imaging modality that is used to visualize the structure of human anatomy. Conventional (high-field) MRI scanners are very expensive to purchase, operate and maintain, which limit their use in many developing...
Autores principales: | Ahishakiye, Emmanuel, Van Gijzen, Martin Bastiaan, Tumwiine, Julius, Obungoloch, Johnes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477908/ https://www.ncbi.nlm.nih.gov/pubmed/32600272 http://dx.doi.org/10.1186/s12880-020-00474-3 |
Ejemplares similares
-
Comparison of q-Space Reconstruction Methods for Undersampled Diffusion Spectrum Imaging Data
por: Varela-Mattatall, Gabriel E., et al.
Publicado: (2019) -
Approaches in cooling of resistive coil-based low-field Magnetic Resonance Imaging (MRI) systems for application in low resource settings
por: Natukunda, Faith, et al.
Publicado: (2021) -
Fast Undersampled Functional Magnetic Resonance Imaging Using Nonlinear Regularized Parallel Image Reconstruction
por: Hugger, Thimo, et al.
Publicado: (2011) -
Undersampled MR Image Reconstruction with Data-Driven Tight Frame
por: Liu, Jianbo, et al.
Publicado: (2015) -
Complexities of deep learning-based undersampled MR image reconstruction
por: Noordman, Constant Richard, et al.
Publicado: (2023)