Cargando…
Statistical Analysis of Clinical COVID-19 Data: A Concise Overview of Lessons Learned, Common Errors and How to Avoid Them
By definition, in-hospital patient data are restricted to the time between hospital admission and discharge (alive or dead). For hospitalised cases of COVID-19, a number of events during hospitalization are of interest regarding the influence of risk factors on the likelihood of experiencing these e...
Autores principales: | Wolkewitz, Martin, Lambert, Jerome, von Cube, Maja, Bugiera, Lars, Grodd, Marlon, Hazard, Derek, White, Nicole, Barnett, Adrian, Kaier, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478365/ https://www.ncbi.nlm.nih.gov/pubmed/32943941 http://dx.doi.org/10.2147/CLEP.S256735 |
Ejemplares similares
-
Joint analysis of duration of ventilation, length of intensive care, and mortality of COVID-19 patients: a multistate approach
por: Hazard, Derek, et al.
Publicado: (2020) -
Common errors in statistics (and how to avoid them)
por: Good, Phillip I.
Publicado: (2012) -
Common errors in statistics: and how to avoid them
por: Good, Phillip I, et al.
Publicado: (2003) -
Common errors in statistics (and how to avoid them)
por: Good, Phillip I, et al.
Publicado: (2012) -
Common errors in statistics: (and how to avoid them)
por: Good, Phillip I, et al.
Publicado: (2009)