Cargando…

Detection of extremity chronic traumatic osteomyelitis by machine learning based on computed-tomography images: A retrospective study

Despite the availability of a series of tests, detection of chronic traumatic osteomyelitis is still exhausting in clinical practice. We hypothesized that machine learning based on computed-tomography (CT) images would provide better diagnostic performance for extremity traumatic chronic osteomyelit...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yifan, Lu, Xin, Hong, Jianqiao, Lin, Weijie, Chen, Shiming, Mou, Shenghong, Feng, Gang, Yan, Ruijian, Cheng, Zhiyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478522/
https://www.ncbi.nlm.nih.gov/pubmed/32118728
http://dx.doi.org/10.1097/MD.0000000000019239
Descripción
Sumario:Despite the availability of a series of tests, detection of chronic traumatic osteomyelitis is still exhausting in clinical practice. We hypothesized that machine learning based on computed-tomography (CT) images would provide better diagnostic performance for extremity traumatic chronic osteomyelitis than the serological biomarker alone. A retrospective study was carried out to collect medical data from patients with extremity traumatic osteomyelitis according to the criteria of musculoskeletal infection society. In each patient, serum levels of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and D-dimer were measured and CT scan of the extremity was conducted 7 days after admission preoperatively. A deep residual network (ResNet) machine learning model was established for recognition of bone lesion on the CT image. A total of 28,718 CT images from 163 adult patients were included. Then, we randomly extracted 80% of all CT images from each patient for training, 10% for validation, and 10% for testing. Our results showed that machine learning (83.4%) outperformed CRP (53.2%), ESR (68.8%), and D-dimer (68.1%) separately in accuracy. Meanwhile, machine learning (88.0%) demonstrated highest sensitivity when compared with CRP (50.6%), ESR (73.0%), and D-dimer (51.7%). Considering the specificity, machine learning (77.0%) is better than CRP (59.4%) and ESR (62.2%), but not D-dimer (83.8%). Our findings indicated that machine learning based on CT images is an effective and promising avenue for detection of chronic traumatic osteomyelitis in the extremity.