Cargando…
Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population
BACKGROUND: Diagnoses of Skin diseases are frequently delayed in China due to lack of dermatologists. A deep learning-based diagnosis supporting system can facilitate pre-screening patients to prioritize dermatologists’ efforts. We aimed to evaluate the classification sensitivity and specificity of...
Autores principales: | Wang, Shi-Qi, Zhang, Xin-Yuan, Liu, Jie, Tao, Cui, Zhu, Chen-Yu, Shu, Chang, Xu, Tao, Jin, Hong-Zhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478660/ https://www.ncbi.nlm.nih.gov/pubmed/32826613 http://dx.doi.org/10.1097/CM9.0000000000001023 |
Ejemplares similares
-
AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function
por: Pham, Tri-Cong, et al.
Publicado: (2021) -
Deep Learning Classifier with Patient’s Metadata of Dermoscopic Images in Malignant Melanoma Detection
por: Ningrum, Dina Nur Anggraini, et al.
Publicado: (2021) -
DermoNet: A Computer-Aided Diagnosis System for Dermoscopic Disease Recognition
por: Bakkouri, Ibtissam, et al.
Publicado: (2020) -
Computer Aided Diagnosis of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions
por: Foahom Gouabou, Arthur Cartel, et al.
Publicado: (2022) -
Assessment of imaging diagnosis ability of skin tumors in Chinese dermatologists
por: Shen, Chang-Bing, et al.
Publicado: (2019)