Cargando…
Unsupervised Learning and Multipartite Network Models: A Promising Approach for Understanding Traditional Medicine
The ultimate goal of precision medicine is to determine right treatment for right patients based on precise diagnosis. To achieve this goal, correct stratification of patients using molecular features and clinical phenotypes is crucial. During the long history of medical science, our understanding o...
Autores principales: | Jafari, Mohieddin, Wang, Yinyin, Amiryousefi, Ali, Tang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479204/ https://www.ncbi.nlm.nih.gov/pubmed/32982738 http://dx.doi.org/10.3389/fphar.2020.01319 |
Ejemplares similares
-
Predicting Meridian in Chinese traditional medicine using machine learning approaches
por: Wang, Yinyin, et al.
Publicado: (2019) -
Network-based modeling of herb combinations in traditional Chinese medicine
por: Wang, Yinyin, et al.
Publicado: (2021) -
The ENDS of assumptions: an online tool for the epistemic non-parametric drug–response scoring
por: Amiryousefi, Ali, et al.
Publicado: (2022) -
Editorial: Bioassays for Assessing Traditional Medicines: Promises and Pitfalls
por: Yang, Zhirui, et al.
Publicado: (2022) -
Multi-omics approaches for in-depth understanding of therapeutic mechanism for Traditional Chinese Medicine
por: Zhu, Xue, et al.
Publicado: (2022)