Cargando…
The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism
It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects. The biomimetic features and unique physiochemical properties of nanomaterials play im...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479260/ https://www.ncbi.nlm.nih.gov/pubmed/32954052 http://dx.doi.org/10.1016/j.bioactmat.2020.08.015 |
_version_ | 1783580233604005888 |
---|---|
author | Du, Zhipo Feng, Xinxing Cao, Guangxiu She, Zhending Tan, Rongwei Aifantis, Katerina E. Zhang, Ruihong Li, Xiaoming |
author_facet | Du, Zhipo Feng, Xinxing Cao, Guangxiu She, Zhending Tan, Rongwei Aifantis, Katerina E. Zhang, Ruihong Li, Xiaoming |
author_sort | Du, Zhipo |
collection | PubMed |
description | It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects. The biomimetic features and unique physiochemical properties of nanomaterials play important roles in stimulating cellular functions and guiding tissue regeneration. But efficacy degree of some nanomaterials to promote specific tissue formation is still not clear. We hereby comparatively studied the osteogenic ability of our treated multi-walled carbon nanotubes (MCNTs) and the main inorganic mineral component of natural bone, nano-hydroxyapatite (nHA) in the same system, and tried to tell the related mechanism. In vitro culture of human adipose-derived mesenchymal stem cells (HASCs) on the MCNTs and nHA demonstrated that although there was no significant difference in the cell adhesion amount between on the MCNTs and nHA, the cell attachment strength and proliferation on the MCNTs were better. Most importantly, the MCNTs could induce osteogenic differentiation of the HASCs better than the nHA, the possible mechanism of which was found to be that the MCNTs could activate Notch involved signaling pathways by concentrating more proteins, including specific bone-inducing ones. Moreover, the MCNTs could induce ectopic bone formation in vivo while the nHA could not, which might be because MCNTs could stimulate inducible cells in tissues to form inductive bone better than nHA by concentrating more proteins including specific bone-inducing ones secreted from M2 macrophages. Therefore, MCNTs might be more effective materials for accelerating bone formation even than nHA. |
format | Online Article Text |
id | pubmed-7479260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-74792602020-09-17 The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism Du, Zhipo Feng, Xinxing Cao, Guangxiu She, Zhending Tan, Rongwei Aifantis, Katerina E. Zhang, Ruihong Li, Xiaoming Bioact Mater Article It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects. The biomimetic features and unique physiochemical properties of nanomaterials play important roles in stimulating cellular functions and guiding tissue regeneration. But efficacy degree of some nanomaterials to promote specific tissue formation is still not clear. We hereby comparatively studied the osteogenic ability of our treated multi-walled carbon nanotubes (MCNTs) and the main inorganic mineral component of natural bone, nano-hydroxyapatite (nHA) in the same system, and tried to tell the related mechanism. In vitro culture of human adipose-derived mesenchymal stem cells (HASCs) on the MCNTs and nHA demonstrated that although there was no significant difference in the cell adhesion amount between on the MCNTs and nHA, the cell attachment strength and proliferation on the MCNTs were better. Most importantly, the MCNTs could induce osteogenic differentiation of the HASCs better than the nHA, the possible mechanism of which was found to be that the MCNTs could activate Notch involved signaling pathways by concentrating more proteins, including specific bone-inducing ones. Moreover, the MCNTs could induce ectopic bone formation in vivo while the nHA could not, which might be because MCNTs could stimulate inducible cells in tissues to form inductive bone better than nHA by concentrating more proteins including specific bone-inducing ones secreted from M2 macrophages. Therefore, MCNTs might be more effective materials for accelerating bone formation even than nHA. KeAi Publishing 2020-09-01 /pmc/articles/PMC7479260/ /pubmed/32954052 http://dx.doi.org/10.1016/j.bioactmat.2020.08.015 Text en © 2020 [The Author/The Authors] http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Du, Zhipo Feng, Xinxing Cao, Guangxiu She, Zhending Tan, Rongwei Aifantis, Katerina E. Zhang, Ruihong Li, Xiaoming The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism |
title | The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism |
title_full | The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism |
title_fullStr | The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism |
title_full_unstemmed | The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism |
title_short | The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism |
title_sort | effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479260/ https://www.ncbi.nlm.nih.gov/pubmed/32954052 http://dx.doi.org/10.1016/j.bioactmat.2020.08.015 |
work_keys_str_mv | AT duzhipo theeffectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT fengxinxing theeffectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT caoguangxiu theeffectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT shezhending theeffectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT tanrongwei theeffectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT aifantiskaterinae theeffectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT zhangruihong theeffectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT lixiaoming theeffectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT duzhipo effectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT fengxinxing effectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT caoguangxiu effectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT shezhending effectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT tanrongwei effectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT aifantiskaterinae effectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT zhangruihong effectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism AT lixiaoming effectofcarbonnanotubesonosteogenicfunctionsofadiposederivedmesenchymalstemcellsinvitroandboneformationinvivocomparedwiththatofnanohydroxyapatiteandthepossiblemechanism |