Cargando…

Selective Response to Bacterial Infection by Regulating Siglec-E Expression

Interactions between microbes and hosts can be a benign, deleterious, or even fatal, resulting in death of the host, the microbe, or both. Sialic acid-binding immunoglobulin-like lectins (Siglecs) suppress infection responses to sialylated pathogens. However, most pathogens are nonsialylated. Here w...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yin, Yang, Darong, Liu, Runhua, Wang, Lizhong, Chen, Guo-Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479279/
https://www.ncbi.nlm.nih.gov/pubmed/32889432
http://dx.doi.org/10.1016/j.isci.2020.101473
Descripción
Sumario:Interactions between microbes and hosts can be a benign, deleterious, or even fatal, resulting in death of the host, the microbe, or both. Sialic acid-binding immunoglobulin-like lectins (Siglecs) suppress infection responses to sialylated pathogens. However, most pathogens are nonsialylated. Here we determined Siglecs respond to nonsialylated Gram-negative bacteria (Escherichia coli 25922 and DH5α) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes). We found that Siglece(−/−) mice had higher mortality than wild-type mice following Gram-negative but not Gram-positive bacterial infection. Better survival in wild-type mice depended on more efficient clearance of Gram-negative than Gram-positive bacteria. Gram-negative bacteria upregulated Siglec-E, thus increasing reactive oxygen species (ROS); Tyr432 in the ITIM domain of Siglec-E was required to increase ROS. Moreover, Gram-negative bacteria upregulated Siglec-E via TLR4/MyD88/JNK/NF-κB/AP-1, whereas Gram-positive bacteria downregulated Siglec-E via TLR2/RANKL/TRAF6/Syk. Thus, our study describes a fundamentally new role for Siglec-E during infection.