Cargando…
CLICK-ID: A novel dataset for Indonesian clickbait headlines
News analysis is a popular task in Natural Language Processing (NLP). In particular, the problem of clickbait in news analysis has gained attention in recent years [1, 2]. However, the majority of the tasks has been focused on English news, in which there is already a rich representative resource. F...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479324/ https://www.ncbi.nlm.nih.gov/pubmed/32939383 http://dx.doi.org/10.1016/j.dib.2020.106231 |
Sumario: | News analysis is a popular task in Natural Language Processing (NLP). In particular, the problem of clickbait in news analysis has gained attention in recent years [1, 2]. However, the majority of the tasks has been focused on English news, in which there is already a rich representative resource. For other languages, such as Indonesian, there is still a lack of resource for clickbait tasks. Therefore, we introduce the CLICK-ID dataset of Indonesian news headlines extracted from 12 Indonesian online news publishers. It is comprised of 15,000 annotated headlines with clickbait and non-clickbait labels. Using the CLICK-ID dataset, we then developed an Indonesian clickbait classification model achieving favourable performance. We believe that this corpus will be useful for replicable experiments in clickbait detection or other experiments in NLP areas. |
---|