Cargando…

Evoked and intrinsic brain network dynamics in children with autism spectrum disorder

OBJECTIVE: Brain dynamics underlie flexible cognition and behavior, yet little is known regarding this relationship in autism spectrum disorder (ASD). We examined time-varying changes in functional co-activation patterns (CAPs) across rest and task-evoked brain states to characterize differences bet...

Descripción completa

Detalles Bibliográficos
Autores principales: Kupis, Lauren, Romero, Celia, Dirks, Bryce, Hoang, Stephanie, Parladé, Meaghan V., Beaumont, Amy L., Cardona, Sandra M., Alessandri, Michael, Chang, Catie, Nomi, Jason S., Uddin, Lucina Q.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479441/
https://www.ncbi.nlm.nih.gov/pubmed/32891039
http://dx.doi.org/10.1016/j.nicl.2020.102396
Descripción
Sumario:OBJECTIVE: Brain dynamics underlie flexible cognition and behavior, yet little is known regarding this relationship in autism spectrum disorder (ASD). We examined time-varying changes in functional co-activation patterns (CAPs) across rest and task-evoked brain states to characterize differences between children with ASD and typically developing (TD) children and identify relationships with severity of social behaviors and restricted and repetitive behaviors. METHOD: 17 children with ASD and 27 TD children ages 7–12 completed a resting-state fMRI scan and four runs of a non-cued attention switching task. Metrics indexing brain dynamics were generated from dynamic CAPs computed across three major large-scale brain networks: midcingulo-insular (M-CIN), medial frontoparietal (M-FPN), and lateral frontoparietal (L-FPN). RESULTS: Five time-varying CAPs representing dynamic co-activations among network nodes were identified across rest and task fMRI datasets. Significant Diagnosis × Condition interactions were observed for the dwell time of CAP 3, representing co-activation between nodes of the M-CIN and L-FPN, and the frequency of CAP 1, representing co-activation between nodes of the L-FPN. A significant brain-behavior association between dwell time of CAP 5, representing co-activation between nodes of the M-FPN, and social abilities was also observed across both groups of children. CONCLUSION: Analysis of brain co-activation patterns reveals altered dynamics among three core networks in children with ASD, particularly evident during later stages of an attention task. Dimensional analyses demonstrating relationships between M-FPN dwell time and social abilities suggest that metrics of brain dynamics may index individual differences in social cognition and behavior.