Cargando…
Optimal co-clinical radiomics: Sensitivity of radiomic features to tumour volume, image noise and resolution in co-clinical T1-weighted and T2-weighted magnetic resonance imaging
BACKGROUND: Radiomics analyses has been proposed to interrogate the biology of tumour as well as to predict/assess response to therapy in vivo. The objective of this work was to assess the sensitivity of radiomics features to noise, resolution, and tumour volume in the context of a co-clinical trial...
Autores principales: | Roy, Sudipta, Whitehead, Timothy D., Quirk, James D., Salter, Amber, Ademuyiwa, Foluso O., Li, Shunqiang, An, Hongyu, Shoghi, Kooresh I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479492/ https://www.ncbi.nlm.nih.gov/pubmed/32891051 http://dx.doi.org/10.1016/j.ebiom.2020.102963 |
Ejemplares similares
-
Co-clinical FDG-PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer
por: Roy, Sudipta, et al.
Publicado: (2021) -
Correction to: Co‑clinical FDG‑PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple‑negative breast cancer
por: Roy, Sudipta, et al.
Publicado: (2021) -
Deep Learning Segmentation of Triple-Negative Breast Cancer (TNBC) Patient Derived Tumor Xenograft (PDX) and Sensitivity of Radiomic Pipeline to Tumor Probability Boundary
por: Dutta, Kaushik, et al.
Publicado: (2021) -
Radiomics Analysis of Susceptibility Weighted Imaging for Hepatocellular Carcinoma: Exploring the Correlation between Histopathology and Radiomics Features
por: Geng, Zhijun, et al.
Publicado: (2020) -
Combination of Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in Cervical Cancer
por: Jajodia, Ankush, et al.
Publicado: (2021)