Cargando…
K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations
Recognizing emotions during social interactions has many potential applications with the popularization of low-cost mobile sensors, but a challenge remains with the lack of naturalistic affective interaction data. Most existing emotion datasets do not support studying idiosyncratic emotions arising...
Autores principales: | Park, Cheul Young, Cha, Narae, Kang, Soowon, Kim, Auk, Khandoker, Ahsan Habib, Hadjileontiadis, Leontios, Oh, Alice, Jeong, Yong, Lee, Uichin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479607/ https://www.ncbi.nlm.nih.gov/pubmed/32901038 http://dx.doi.org/10.1038/s41597-020-00630-y |
Ejemplares similares
-
K-EmoPhone: A Mobile and Wearable Dataset with In-Situ Emotion, Stress, and Attention Labels
por: Kang, Soowon, et al.
Publicado: (2023) -
Trends in Smart Helmets With Multimodal Sensing for Health and Safety: Scoping Review
por: Lee, Peter, et al.
Publicado: (2022) -
Open multimodal iEEG-fMRI dataset from naturalistic stimulation with a short audiovisual film
por: Berezutskaya, Julia, et al.
Publicado: (2022) -
CHQ- SocioEmo: Identifying Social and Emotional Support Needs in Consumer-Health Questions
por: Alasmari, Ashwag, et al.
Publicado: (2023) -
Beyond Pathogen Filtration: Possibility of Smart Masks as Wearable Devices for Personal and Group Health and Safety Management
por: Lee, Peter, et al.
Publicado: (2022)