Cargando…
Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors
Current crop production systems are prone to increasing pathogen pressure. Fundamental understanding of molecular plant-pathogen interactions, the availability of crop and pathogen genomic information, as well as emerging genome editing permits a novel approach for breeding of crop disease resistanc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479627/ https://www.ncbi.nlm.nih.gov/pubmed/32891884 http://dx.doi.org/10.1016/j.isci.2020.101478 |
Sumario: | Current crop production systems are prone to increasing pathogen pressure. Fundamental understanding of molecular plant-pathogen interactions, the availability of crop and pathogen genomic information, as well as emerging genome editing permits a novel approach for breeding of crop disease resistance. We describe here strategies to identify new targets for resistance breeding with focus on interruption of the compatible plant-pathogen interaction by CRISPR/Cas-mediated genome editing. Basically, crop genome editing can be applied in several ways to achieve this goal. The most common approach focuses on the “simple” knockout by non-homologous end joining repair of plant susceptibility factors required for efficient host colonization. However, genome re-writing via homology-directed repair or base editing can also prevent host manipulation by changing the targets of pathogen-derived effectors or molecules beyond recognition, which also decreases plant susceptibility. We conclude that genome editing by CRISPR/Cas will become increasingly indispensable to generate in relatively short time beneficial resistance traits in crops to meet upcoming challenges. |
---|