Cargando…
Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS
Blood–spinal cord barrier (BSCB) disruption is thought to contribute to motoneuron (MN) loss in amyotrophic lateral sclerosis (ALS). It is currently unclear whether impairment of the BSCB is the cause or consequence of MN dysfunction and whether its restoration may be directly beneficial. We reveale...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479971/ https://www.ncbi.nlm.nih.gov/pubmed/32900826 http://dx.doi.org/10.26508/lsa.201900571 |
_version_ | 1783580346617430016 |
---|---|
author | Ouali Alami, Najwa Tang, Linyun Wiesner, Diana Commisso, Barbara Bayer, David Weishaupt, Jochen Dupuis, Luc Wong, Phillip Baumann, Bernd Wirth, Thomas Boeckers, Tobias M Yilmazer-Hanke, Deniz Ludolph, Albert Roselli, Francesco |
author_facet | Ouali Alami, Najwa Tang, Linyun Wiesner, Diana Commisso, Barbara Bayer, David Weishaupt, Jochen Dupuis, Luc Wong, Phillip Baumann, Bernd Wirth, Thomas Boeckers, Tobias M Yilmazer-Hanke, Deniz Ludolph, Albert Roselli, Francesco |
author_sort | Ouali Alami, Najwa |
collection | PubMed |
description | Blood–spinal cord barrier (BSCB) disruption is thought to contribute to motoneuron (MN) loss in amyotrophic lateral sclerosis (ALS). It is currently unclear whether impairment of the BSCB is the cause or consequence of MN dysfunction and whether its restoration may be directly beneficial. We revealed that SOD1(G93A), FUS(ΔNLS), TDP43(G298S), and Tbk1(+/−) ALS mouse models commonly shared alterations in the BSCB, unrelated to motoneuron loss. We exploit PSAM/PSEM chemogenetics in SOD1(G93A) mice to demonstrate that the BSCB is rescued by increased MN firing, whereas inactivation worsens it. Moreover, we use DREADD chemogenetics, alone or in multiplexed form, to show that activation of Gi signaling in astrocytes restores BSCB integrity, independently of MN firing, with no effect on MN disease markers and dissociating them from BSCB disruption. We show that astrocytic levels of the BSCB stabilizers Wnt7a and Wnt5a are decreased in SOD1(G93A) mice and strongly enhanced by Gi signaling, although further decreased by MN inactivation. Thus, we demonstrate that BSCB impairment follows MN dysfunction in ALS pathogenesis but can be reversed by Gi-induced expression of astrocytic Wnt5a/7a. |
format | Online Article Text |
id | pubmed-7479971 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-74799712020-09-21 Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS Ouali Alami, Najwa Tang, Linyun Wiesner, Diana Commisso, Barbara Bayer, David Weishaupt, Jochen Dupuis, Luc Wong, Phillip Baumann, Bernd Wirth, Thomas Boeckers, Tobias M Yilmazer-Hanke, Deniz Ludolph, Albert Roselli, Francesco Life Sci Alliance Research Articles Blood–spinal cord barrier (BSCB) disruption is thought to contribute to motoneuron (MN) loss in amyotrophic lateral sclerosis (ALS). It is currently unclear whether impairment of the BSCB is the cause or consequence of MN dysfunction and whether its restoration may be directly beneficial. We revealed that SOD1(G93A), FUS(ΔNLS), TDP43(G298S), and Tbk1(+/−) ALS mouse models commonly shared alterations in the BSCB, unrelated to motoneuron loss. We exploit PSAM/PSEM chemogenetics in SOD1(G93A) mice to demonstrate that the BSCB is rescued by increased MN firing, whereas inactivation worsens it. Moreover, we use DREADD chemogenetics, alone or in multiplexed form, to show that activation of Gi signaling in astrocytes restores BSCB integrity, independently of MN firing, with no effect on MN disease markers and dissociating them from BSCB disruption. We show that astrocytic levels of the BSCB stabilizers Wnt7a and Wnt5a are decreased in SOD1(G93A) mice and strongly enhanced by Gi signaling, although further decreased by MN inactivation. Thus, we demonstrate that BSCB impairment follows MN dysfunction in ALS pathogenesis but can be reversed by Gi-induced expression of astrocytic Wnt5a/7a. Life Science Alliance LLC 2020-09-08 /pmc/articles/PMC7479971/ /pubmed/32900826 http://dx.doi.org/10.26508/lsa.201900571 Text en © 2020 Ouali Alami et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Ouali Alami, Najwa Tang, Linyun Wiesner, Diana Commisso, Barbara Bayer, David Weishaupt, Jochen Dupuis, Luc Wong, Phillip Baumann, Bernd Wirth, Thomas Boeckers, Tobias M Yilmazer-Hanke, Deniz Ludolph, Albert Roselli, Francesco Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS |
title | Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS |
title_full | Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS |
title_fullStr | Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS |
title_full_unstemmed | Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS |
title_short | Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS |
title_sort | multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in als |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479971/ https://www.ncbi.nlm.nih.gov/pubmed/32900826 http://dx.doi.org/10.26508/lsa.201900571 |
work_keys_str_mv | AT oualialaminajwa multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT tanglinyun multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT wiesnerdiana multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT commissobarbara multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT bayerdavid multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT weishauptjochen multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT dupuisluc multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT wongphillip multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT baumannbernd multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT wirththomas multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT boeckerstobiasm multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT yilmazerhankedeniz multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT ludolphalbert multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals AT rosellifrancesco multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals |