Cargando…

Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS

Blood–spinal cord barrier (BSCB) disruption is thought to contribute to motoneuron (MN) loss in amyotrophic lateral sclerosis (ALS). It is currently unclear whether impairment of the BSCB is the cause or consequence of MN dysfunction and whether its restoration may be directly beneficial. We reveale...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouali Alami, Najwa, Tang, Linyun, Wiesner, Diana, Commisso, Barbara, Bayer, David, Weishaupt, Jochen, Dupuis, Luc, Wong, Phillip, Baumann, Bernd, Wirth, Thomas, Boeckers, Tobias M, Yilmazer-Hanke, Deniz, Ludolph, Albert, Roselli, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479971/
https://www.ncbi.nlm.nih.gov/pubmed/32900826
http://dx.doi.org/10.26508/lsa.201900571
_version_ 1783580346617430016
author Ouali Alami, Najwa
Tang, Linyun
Wiesner, Diana
Commisso, Barbara
Bayer, David
Weishaupt, Jochen
Dupuis, Luc
Wong, Phillip
Baumann, Bernd
Wirth, Thomas
Boeckers, Tobias M
Yilmazer-Hanke, Deniz
Ludolph, Albert
Roselli, Francesco
author_facet Ouali Alami, Najwa
Tang, Linyun
Wiesner, Diana
Commisso, Barbara
Bayer, David
Weishaupt, Jochen
Dupuis, Luc
Wong, Phillip
Baumann, Bernd
Wirth, Thomas
Boeckers, Tobias M
Yilmazer-Hanke, Deniz
Ludolph, Albert
Roselli, Francesco
author_sort Ouali Alami, Najwa
collection PubMed
description Blood–spinal cord barrier (BSCB) disruption is thought to contribute to motoneuron (MN) loss in amyotrophic lateral sclerosis (ALS). It is currently unclear whether impairment of the BSCB is the cause or consequence of MN dysfunction and whether its restoration may be directly beneficial. We revealed that SOD1(G93A), FUS(ΔNLS), TDP43(G298S), and Tbk1(+/−) ALS mouse models commonly shared alterations in the BSCB, unrelated to motoneuron loss. We exploit PSAM/PSEM chemogenetics in SOD1(G93A) mice to demonstrate that the BSCB is rescued by increased MN firing, whereas inactivation worsens it. Moreover, we use DREADD chemogenetics, alone or in multiplexed form, to show that activation of Gi signaling in astrocytes restores BSCB integrity, independently of MN firing, with no effect on MN disease markers and dissociating them from BSCB disruption. We show that astrocytic levels of the BSCB stabilizers Wnt7a and Wnt5a are decreased in SOD1(G93A) mice and strongly enhanced by Gi signaling, although further decreased by MN inactivation. Thus, we demonstrate that BSCB impairment follows MN dysfunction in ALS pathogenesis but can be reversed by Gi-induced expression of astrocytic Wnt5a/7a.
format Online
Article
Text
id pubmed-7479971
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Life Science Alliance LLC
record_format MEDLINE/PubMed
spelling pubmed-74799712020-09-21 Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS Ouali Alami, Najwa Tang, Linyun Wiesner, Diana Commisso, Barbara Bayer, David Weishaupt, Jochen Dupuis, Luc Wong, Phillip Baumann, Bernd Wirth, Thomas Boeckers, Tobias M Yilmazer-Hanke, Deniz Ludolph, Albert Roselli, Francesco Life Sci Alliance Research Articles Blood–spinal cord barrier (BSCB) disruption is thought to contribute to motoneuron (MN) loss in amyotrophic lateral sclerosis (ALS). It is currently unclear whether impairment of the BSCB is the cause or consequence of MN dysfunction and whether its restoration may be directly beneficial. We revealed that SOD1(G93A), FUS(ΔNLS), TDP43(G298S), and Tbk1(+/−) ALS mouse models commonly shared alterations in the BSCB, unrelated to motoneuron loss. We exploit PSAM/PSEM chemogenetics in SOD1(G93A) mice to demonstrate that the BSCB is rescued by increased MN firing, whereas inactivation worsens it. Moreover, we use DREADD chemogenetics, alone or in multiplexed form, to show that activation of Gi signaling in astrocytes restores BSCB integrity, independently of MN firing, with no effect on MN disease markers and dissociating them from BSCB disruption. We show that astrocytic levels of the BSCB stabilizers Wnt7a and Wnt5a are decreased in SOD1(G93A) mice and strongly enhanced by Gi signaling, although further decreased by MN inactivation. Thus, we demonstrate that BSCB impairment follows MN dysfunction in ALS pathogenesis but can be reversed by Gi-induced expression of astrocytic Wnt5a/7a. Life Science Alliance LLC 2020-09-08 /pmc/articles/PMC7479971/ /pubmed/32900826 http://dx.doi.org/10.26508/lsa.201900571 Text en © 2020 Ouali Alami et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Articles
Ouali Alami, Najwa
Tang, Linyun
Wiesner, Diana
Commisso, Barbara
Bayer, David
Weishaupt, Jochen
Dupuis, Luc
Wong, Phillip
Baumann, Bernd
Wirth, Thomas
Boeckers, Tobias M
Yilmazer-Hanke, Deniz
Ludolph, Albert
Roselli, Francesco
Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS
title Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS
title_full Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS
title_fullStr Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS
title_full_unstemmed Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS
title_short Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS
title_sort multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in als
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479971/
https://www.ncbi.nlm.nih.gov/pubmed/32900826
http://dx.doi.org/10.26508/lsa.201900571
work_keys_str_mv AT oualialaminajwa multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT tanglinyun multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT wiesnerdiana multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT commissobarbara multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT bayerdavid multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT weishauptjochen multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT dupuisluc multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT wongphillip multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT baumannbernd multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT wirththomas multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT boeckerstobiasm multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT yilmazerhankedeniz multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT ludolphalbert multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals
AT rosellifrancesco multiplexedchemogeneticsinastrocytesandmotoneuronsrestorebloodspinalcordbarrierinals