Cargando…

Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis

Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration(1,2). This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted...

Descripción completa

Detalles Bibliográficos
Autores principales: Palikuqi, Brisa, Nguyen, Duc-Huy T., Li, Ge, Schreiner, Ryan, Pellegata, Alessandro F., Liu, Ying, Redmond, David, Geng, Fuqiang, Lin, Yang, Gómez-Salinero, Jesus M., Yokoyama, Masataka, Zumbo, Paul, Zhang, Tuo, Kunar, Balvir, Witherspoon, Mavee, Han, Teng, Tedeschi, Alfonso M., Scottoni, Federico, Lipkin, Steven M., Dow, Lukas, Elemento, Olivier, Xiang, Jenny Z., Shido, Koji, Spence, Jason R., Zhou, Qiao J., Schwartz, Robert E., De Coppi, Paolo, Rabbany, Sina Y., Rafii, Shahin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480005/
https://www.ncbi.nlm.nih.gov/pubmed/32908310
http://dx.doi.org/10.1038/s41586-020-2712-z
_version_ 1783580352678199296
author Palikuqi, Brisa
Nguyen, Duc-Huy T.
Li, Ge
Schreiner, Ryan
Pellegata, Alessandro F.
Liu, Ying
Redmond, David
Geng, Fuqiang
Lin, Yang
Gómez-Salinero, Jesus M.
Yokoyama, Masataka
Zumbo, Paul
Zhang, Tuo
Kunar, Balvir
Witherspoon, Mavee
Han, Teng
Tedeschi, Alfonso M.
Scottoni, Federico
Lipkin, Steven M.
Dow, Lukas
Elemento, Olivier
Xiang, Jenny Z.
Shido, Koji
Spence, Jason R.
Zhou, Qiao J.
Schwartz, Robert E.
De Coppi, Paolo
Rabbany, Sina Y.
Rafii, Shahin
author_facet Palikuqi, Brisa
Nguyen, Duc-Huy T.
Li, Ge
Schreiner, Ryan
Pellegata, Alessandro F.
Liu, Ying
Redmond, David
Geng, Fuqiang
Lin, Yang
Gómez-Salinero, Jesus M.
Yokoyama, Masataka
Zumbo, Paul
Zhang, Tuo
Kunar, Balvir
Witherspoon, Mavee
Han, Teng
Tedeschi, Alfonso M.
Scottoni, Federico
Lipkin, Steven M.
Dow, Lukas
Elemento, Olivier
Xiang, Jenny Z.
Shido, Koji
Spence, Jason R.
Zhou, Qiao J.
Schwartz, Robert E.
De Coppi, Paolo
Rabbany, Sina Y.
Rafii, Shahin
author_sort Palikuqi, Brisa
collection PubMed
description Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration(1,2). This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)(3) in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) ‘resets’ these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens(4,5). In three-dimensional matrices—which do not have the constraints of bioprinted scaffolds—the ‘reset’ vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call ‘Organ-On-VascularNet’. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting.
format Online
Article
Text
id pubmed-7480005
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74800052020-09-09 Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis Palikuqi, Brisa Nguyen, Duc-Huy T. Li, Ge Schreiner, Ryan Pellegata, Alessandro F. Liu, Ying Redmond, David Geng, Fuqiang Lin, Yang Gómez-Salinero, Jesus M. Yokoyama, Masataka Zumbo, Paul Zhang, Tuo Kunar, Balvir Witherspoon, Mavee Han, Teng Tedeschi, Alfonso M. Scottoni, Federico Lipkin, Steven M. Dow, Lukas Elemento, Olivier Xiang, Jenny Z. Shido, Koji Spence, Jason R. Zhou, Qiao J. Schwartz, Robert E. De Coppi, Paolo Rabbany, Sina Y. Rafii, Shahin Nature Article Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration(1,2). This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)(3) in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) ‘resets’ these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens(4,5). In three-dimensional matrices—which do not have the constraints of bioprinted scaffolds—the ‘reset’ vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call ‘Organ-On-VascularNet’. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting. Nature Publishing Group UK 2020-09-09 2020 /pmc/articles/PMC7480005/ /pubmed/32908310 http://dx.doi.org/10.1038/s41586-020-2712-z Text en © The Author(s), under exclusive licence to Springer Nature Limited 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Palikuqi, Brisa
Nguyen, Duc-Huy T.
Li, Ge
Schreiner, Ryan
Pellegata, Alessandro F.
Liu, Ying
Redmond, David
Geng, Fuqiang
Lin, Yang
Gómez-Salinero, Jesus M.
Yokoyama, Masataka
Zumbo, Paul
Zhang, Tuo
Kunar, Balvir
Witherspoon, Mavee
Han, Teng
Tedeschi, Alfonso M.
Scottoni, Federico
Lipkin, Steven M.
Dow, Lukas
Elemento, Olivier
Xiang, Jenny Z.
Shido, Koji
Spence, Jason R.
Zhou, Qiao J.
Schwartz, Robert E.
De Coppi, Paolo
Rabbany, Sina Y.
Rafii, Shahin
Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis
title Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis
title_full Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis
title_fullStr Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis
title_full_unstemmed Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis
title_short Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis
title_sort adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480005/
https://www.ncbi.nlm.nih.gov/pubmed/32908310
http://dx.doi.org/10.1038/s41586-020-2712-z
work_keys_str_mv AT palikuqibrisa adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT nguyenduchuyt adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT lige adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT schreinerryan adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT pellegataalessandrof adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT liuying adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT redmonddavid adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT gengfuqiang adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT linyang adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT gomezsalinerojesusm adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT yokoyamamasataka adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT zumbopaul adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT zhangtuo adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT kunarbalvir adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT witherspoonmavee adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT hanteng adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT tedeschialfonsom adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT scottonifederico adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT lipkinstevenm adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT dowlukas adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT elementoolivier adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT xiangjennyz adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT shidokoji adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT spencejasonr adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT zhouqiaoj adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT schwartzroberte adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT decoppipaolo adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT rabbanysinay adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis
AT rafiishahin adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis