Cargando…
Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis
Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration(1,2). This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480005/ https://www.ncbi.nlm.nih.gov/pubmed/32908310 http://dx.doi.org/10.1038/s41586-020-2712-z |
_version_ | 1783580352678199296 |
---|---|
author | Palikuqi, Brisa Nguyen, Duc-Huy T. Li, Ge Schreiner, Ryan Pellegata, Alessandro F. Liu, Ying Redmond, David Geng, Fuqiang Lin, Yang Gómez-Salinero, Jesus M. Yokoyama, Masataka Zumbo, Paul Zhang, Tuo Kunar, Balvir Witherspoon, Mavee Han, Teng Tedeschi, Alfonso M. Scottoni, Federico Lipkin, Steven M. Dow, Lukas Elemento, Olivier Xiang, Jenny Z. Shido, Koji Spence, Jason R. Zhou, Qiao J. Schwartz, Robert E. De Coppi, Paolo Rabbany, Sina Y. Rafii, Shahin |
author_facet | Palikuqi, Brisa Nguyen, Duc-Huy T. Li, Ge Schreiner, Ryan Pellegata, Alessandro F. Liu, Ying Redmond, David Geng, Fuqiang Lin, Yang Gómez-Salinero, Jesus M. Yokoyama, Masataka Zumbo, Paul Zhang, Tuo Kunar, Balvir Witherspoon, Mavee Han, Teng Tedeschi, Alfonso M. Scottoni, Federico Lipkin, Steven M. Dow, Lukas Elemento, Olivier Xiang, Jenny Z. Shido, Koji Spence, Jason R. Zhou, Qiao J. Schwartz, Robert E. De Coppi, Paolo Rabbany, Sina Y. Rafii, Shahin |
author_sort | Palikuqi, Brisa |
collection | PubMed |
description | Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration(1,2). This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)(3) in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) ‘resets’ these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens(4,5). In three-dimensional matrices—which do not have the constraints of bioprinted scaffolds—the ‘reset’ vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call ‘Organ-On-VascularNet’. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting. |
format | Online Article Text |
id | pubmed-7480005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74800052020-09-09 Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis Palikuqi, Brisa Nguyen, Duc-Huy T. Li, Ge Schreiner, Ryan Pellegata, Alessandro F. Liu, Ying Redmond, David Geng, Fuqiang Lin, Yang Gómez-Salinero, Jesus M. Yokoyama, Masataka Zumbo, Paul Zhang, Tuo Kunar, Balvir Witherspoon, Mavee Han, Teng Tedeschi, Alfonso M. Scottoni, Federico Lipkin, Steven M. Dow, Lukas Elemento, Olivier Xiang, Jenny Z. Shido, Koji Spence, Jason R. Zhou, Qiao J. Schwartz, Robert E. De Coppi, Paolo Rabbany, Sina Y. Rafii, Shahin Nature Article Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration(1,2). This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)(3) in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) ‘resets’ these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens(4,5). In three-dimensional matrices—which do not have the constraints of bioprinted scaffolds—the ‘reset’ vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call ‘Organ-On-VascularNet’. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting. Nature Publishing Group UK 2020-09-09 2020 /pmc/articles/PMC7480005/ /pubmed/32908310 http://dx.doi.org/10.1038/s41586-020-2712-z Text en © The Author(s), under exclusive licence to Springer Nature Limited 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Palikuqi, Brisa Nguyen, Duc-Huy T. Li, Ge Schreiner, Ryan Pellegata, Alessandro F. Liu, Ying Redmond, David Geng, Fuqiang Lin, Yang Gómez-Salinero, Jesus M. Yokoyama, Masataka Zumbo, Paul Zhang, Tuo Kunar, Balvir Witherspoon, Mavee Han, Teng Tedeschi, Alfonso M. Scottoni, Federico Lipkin, Steven M. Dow, Lukas Elemento, Olivier Xiang, Jenny Z. Shido, Koji Spence, Jason R. Zhou, Qiao J. Schwartz, Robert E. De Coppi, Paolo Rabbany, Sina Y. Rafii, Shahin Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis |
title | Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis |
title_full | Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis |
title_fullStr | Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis |
title_full_unstemmed | Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis |
title_short | Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis |
title_sort | adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480005/ https://www.ncbi.nlm.nih.gov/pubmed/32908310 http://dx.doi.org/10.1038/s41586-020-2712-z |
work_keys_str_mv | AT palikuqibrisa adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT nguyenduchuyt adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT lige adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT schreinerryan adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT pellegataalessandrof adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT liuying adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT redmonddavid adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT gengfuqiang adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT linyang adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT gomezsalinerojesusm adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT yokoyamamasataka adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT zumbopaul adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT zhangtuo adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT kunarbalvir adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT witherspoonmavee adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT hanteng adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT tedeschialfonsom adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT scottonifederico adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT lipkinstevenm adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT dowlukas adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT elementoolivier adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT xiangjennyz adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT shidokoji adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT spencejasonr adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT zhouqiaoj adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT schwartzroberte adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT decoppipaolo adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT rabbanysinay adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis AT rafiishahin adaptablehaemodynamicendothelialcellsfororganogenesisandtumorigenesis |