Cargando…
Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks
Non-invasive fetal electrocardiography represents a valuable alternative continuous fetal monitoring method that has recently received considerable attention in assessing fetal health. However, the non-invasive fetal electrocardiogram (ECG) is typically severely contaminated by a considerable amount...
Autores principales: | Fotiadou, Eleni, Vullings, Rik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480014/ https://www.ncbi.nlm.nih.gov/pubmed/32984218 http://dx.doi.org/10.3389/fped.2020.00508 |
Ejemplares similares
-
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023) -
Non-invasive Fetal Electrocardiography for Intrapartum Cardiotocography
por: Vullings, Rik, et al.
Publicado: (2020) -
A Denoising and Fourier Transformation-Based Spectrograms in ECG Classification Using Convolutional Neural Network
por: Safdar, Muhammad Farhan, et al.
Publicado: (2022) -
Multi-View Image Denoising Using Convolutional Neural Network
por: Zhou, Shiwei, et al.
Publicado: (2019) -
Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG
por: Lee, Kwang Jin, et al.
Publicado: (2016)