Cargando…
In silico dynamics of COVID-19 phenotypes for optimizing clinical management
Undefirstanding the underlying mechanisms of COVID-19 progression and the impact of various pharmaceutical interventions is crucial for the clinical management of the disease. We developed a comprehensive mathematical framework based on the known mechanisms of the SARS-CoV-2 virus infection, incorpo...
Autores principales: | Voutouri, Chrysovalantis, Nikmaneshi, Mohammad Reza, Hardin, C. Corey, Patel, Ankit B., Verma, Ashish, Khandekar, Melin J., Dutta, Sayon, Stylianopoulos, Triantafyllos, Munn, Lance L., Jain, Rakesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480033/ https://www.ncbi.nlm.nih.gov/pubmed/32908974 http://dx.doi.org/10.21203/rs.3.rs-71086/v1 |
Ejemplares similares
-
In silico dynamics of COVID-19 phenotypes for optimizing clinical management
por: Voutouri, Chrysovalantis, et al.
Publicado: (2021) -
Strategies to minimize heterogeneity and optimize clinical trials in Acute Respiratory Distress Syndrome (ARDS): Insights from mathematical modelling
por: Subudhi, Sonu, et al.
Publicado: (2022) -
Mechanistic model for booster doses effectiveness in healthy, cancer, and immunosuppressed patients infected with SARS-CoV-2
por: Voutouri, Chrysovalantis, et al.
Publicado: (2023) -
Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19
por: Subudhi, Sonu, et al.
Publicado: (2021) -
Accumulation of mechanical forces in tumors is related to hyaluronan content and tissue stiffness
por: Voutouri, Chrysovalantis, et al.
Publicado: (2018)