Cargando…
CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus
Acquisition of spacers confers the CRISPR–Cas system with the memory to defend against invading mobile genetic elements. We previously reported that the CRISPR-associated factor Csa3a triggers CRISPR adaptation in Sulfolobus islandicus. However, a feedback regulation of CRISPR adaptation remains unc...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480081/ https://www.ncbi.nlm.nih.gov/pubmed/32983033 http://dx.doi.org/10.3389/fmicb.2020.02038 |
_version_ | 1783580362079731712 |
---|---|
author | Ye, Qing Zhao, Xueqiao Liu, Jilin Zeng, Zhifeng Zhang, Zhufeng Liu, Tao Li, Yingjun Han, Wenyuan Peng, Nan |
author_facet | Ye, Qing Zhao, Xueqiao Liu, Jilin Zeng, Zhifeng Zhang, Zhufeng Liu, Tao Li, Yingjun Han, Wenyuan Peng, Nan |
author_sort | Ye, Qing |
collection | PubMed |
description | Acquisition of spacers confers the CRISPR–Cas system with the memory to defend against invading mobile genetic elements. We previously reported that the CRISPR-associated factor Csa3a triggers CRISPR adaptation in Sulfolobus islandicus. However, a feedback regulation of CRISPR adaptation remains unclear. Here we show that another CRISPR-associated factor, Csa3b, binds a cyclic oligoadenylate (cOA) analog (5′-CAAAA-3′) and mutation at its CARF domain, which reduces the binding affinity. Csa3b also binds the promoter of adaptation cas genes, and the cOA analog enhances their binding probably by allosteric regulation. Deletion of the csa3b gene triggers spacer acquisition from both plasmid and viral DNAs, indicating that Csa3b acted as a repressor for CRISPR adaptation. Moreover, we also find that Csa3b activates the expression of subtype cmr-α and cmr-β genes according to transcriptome data and demonstrate that Csa3b binds the promoters of cmr genes. The deletion of the csa3b gene reduces Cmr-mediated RNA interference activity, indicating that Csa3b acts as a transcriptional activator for Cmr-mediated RNA interference. In summary, our findings reveal a novel pathway for the regulation of CRISPR adaptation and CRISPR–Cmr RNA interference in S. islandicus. Our results also suggest a feedback repression of CRIPSR adaptation by the Csa3b factor and the cOA signal produced by the Cmr complex at the CRISPR interference stage. |
format | Online Article Text |
id | pubmed-7480081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74800812020-09-24 CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus Ye, Qing Zhao, Xueqiao Liu, Jilin Zeng, Zhifeng Zhang, Zhufeng Liu, Tao Li, Yingjun Han, Wenyuan Peng, Nan Front Microbiol Microbiology Acquisition of spacers confers the CRISPR–Cas system with the memory to defend against invading mobile genetic elements. We previously reported that the CRISPR-associated factor Csa3a triggers CRISPR adaptation in Sulfolobus islandicus. However, a feedback regulation of CRISPR adaptation remains unclear. Here we show that another CRISPR-associated factor, Csa3b, binds a cyclic oligoadenylate (cOA) analog (5′-CAAAA-3′) and mutation at its CARF domain, which reduces the binding affinity. Csa3b also binds the promoter of adaptation cas genes, and the cOA analog enhances their binding probably by allosteric regulation. Deletion of the csa3b gene triggers spacer acquisition from both plasmid and viral DNAs, indicating that Csa3b acted as a repressor for CRISPR adaptation. Moreover, we also find that Csa3b activates the expression of subtype cmr-α and cmr-β genes according to transcriptome data and demonstrate that Csa3b binds the promoters of cmr genes. The deletion of the csa3b gene reduces Cmr-mediated RNA interference activity, indicating that Csa3b acts as a transcriptional activator for Cmr-mediated RNA interference. In summary, our findings reveal a novel pathway for the regulation of CRISPR adaptation and CRISPR–Cmr RNA interference in S. islandicus. Our results also suggest a feedback repression of CRIPSR adaptation by the Csa3b factor and the cOA signal produced by the Cmr complex at the CRISPR interference stage. Frontiers Media S.A. 2020-08-26 /pmc/articles/PMC7480081/ /pubmed/32983033 http://dx.doi.org/10.3389/fmicb.2020.02038 Text en Copyright © 2020 Ye, Zhao, Liu, Zeng, Zhang, Liu, Li, Han and Peng. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Ye, Qing Zhao, Xueqiao Liu, Jilin Zeng, Zhifeng Zhang, Zhufeng Liu, Tao Li, Yingjun Han, Wenyuan Peng, Nan CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus |
title | CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus |
title_full | CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus |
title_fullStr | CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus |
title_full_unstemmed | CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus |
title_short | CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus |
title_sort | crispr-associated factor csa3b regulates crispr adaptation and cmr-mediated rna interference in sulfolobus islandicus |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480081/ https://www.ncbi.nlm.nih.gov/pubmed/32983033 http://dx.doi.org/10.3389/fmicb.2020.02038 |
work_keys_str_mv | AT yeqing crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus AT zhaoxueqiao crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus AT liujilin crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus AT zengzhifeng crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus AT zhangzhufeng crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus AT liutao crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus AT liyingjun crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus AT hanwenyuan crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus AT pengnan crisprassociatedfactorcsa3bregulatescrispradaptationandcmrmediatedrnainterferenceinsulfolobusislandicus |