Cargando…
Ionomers From Kraft Lignin for Renewable Energy Applications
Converting industrial/agricultural lignin-rich wastes to efficient, cost-effective materials for electrochemical devices (e.g., fuel cells) can aid in both bio- and energy economy. A major limitation of fuel cells is the weak ion conductivity within the ~2–30-nm thick, ion-conducting polymer (ionome...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480228/ https://www.ncbi.nlm.nih.gov/pubmed/33005600 http://dx.doi.org/10.3389/fchem.2020.00690 |
_version_ | 1783580387018014720 |
---|---|
author | Farzin, Seefat Johnson, Tyler J. Chatterjee, Shyambo Zamani, Ehsan Dishari, Shudipto K. |
author_facet | Farzin, Seefat Johnson, Tyler J. Chatterjee, Shyambo Zamani, Ehsan Dishari, Shudipto K. |
author_sort | Farzin, Seefat |
collection | PubMed |
description | Converting industrial/agricultural lignin-rich wastes to efficient, cost-effective materials for electrochemical devices (e.g., fuel cells) can aid in both bio- and energy economy. A major limitation of fuel cells is the weak ion conductivity within the ~2–30-nm thick, ion-conducting polymer (ionomer)-based catalyst-binder layer over electrodes. Here, we strategically sulfonated kraft lignin (a by-product of pulp and paper industries) to design ionomers with varied ion exchange capacities (IECs) (LS x; x = IEC) that can potentially overcome this interfacial ion conduction limitation. We measured the ion conductivity, water uptake, ionic domain characteristics, density, and predicted the water mobility/stiffness of Nafion, LS 1.6, and LS 3.1 in submicron-thick hydrated films. LS 1.6 showed ion conductivity an order of magnitude higher than Nafion and LS 3.1 in films with similar thickness. The ion conductivity of these films was not correlated to their water uptake and IECs. Within the three-dimensional, less dense, branched architecture of LS 1.6 macromolecules, the –SO(3)H and –OH groups are in close proximity, which likely facilitated the formation of larger ionic domains having highly mobile water molecules. As compared to LS 1.6, LS 3.1 showed a higher glass transition temperature and film stiffness at dry state, which sustained during humidification. On the contrary, Nafion stiffened significantly upon humidification. The smaller ionic cluster within stiff LS 3.1 and Nafion films thus led to ion conductivity lower than LS 1.6. Since LS x ionomers (unlike commercial lignosulfonate) are not water soluble, they are suitable for low-temperature, water-mediated ion conduction in submicron-thick films. |
format | Online Article Text |
id | pubmed-7480228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74802282020-09-30 Ionomers From Kraft Lignin for Renewable Energy Applications Farzin, Seefat Johnson, Tyler J. Chatterjee, Shyambo Zamani, Ehsan Dishari, Shudipto K. Front Chem Chemistry Converting industrial/agricultural lignin-rich wastes to efficient, cost-effective materials for electrochemical devices (e.g., fuel cells) can aid in both bio- and energy economy. A major limitation of fuel cells is the weak ion conductivity within the ~2–30-nm thick, ion-conducting polymer (ionomer)-based catalyst-binder layer over electrodes. Here, we strategically sulfonated kraft lignin (a by-product of pulp and paper industries) to design ionomers with varied ion exchange capacities (IECs) (LS x; x = IEC) that can potentially overcome this interfacial ion conduction limitation. We measured the ion conductivity, water uptake, ionic domain characteristics, density, and predicted the water mobility/stiffness of Nafion, LS 1.6, and LS 3.1 in submicron-thick hydrated films. LS 1.6 showed ion conductivity an order of magnitude higher than Nafion and LS 3.1 in films with similar thickness. The ion conductivity of these films was not correlated to their water uptake and IECs. Within the three-dimensional, less dense, branched architecture of LS 1.6 macromolecules, the –SO(3)H and –OH groups are in close proximity, which likely facilitated the formation of larger ionic domains having highly mobile water molecules. As compared to LS 1.6, LS 3.1 showed a higher glass transition temperature and film stiffness at dry state, which sustained during humidification. On the contrary, Nafion stiffened significantly upon humidification. The smaller ionic cluster within stiff LS 3.1 and Nafion films thus led to ion conductivity lower than LS 1.6. Since LS x ionomers (unlike commercial lignosulfonate) are not water soluble, they are suitable for low-temperature, water-mediated ion conduction in submicron-thick films. Frontiers Media S.A. 2020-08-26 /pmc/articles/PMC7480228/ /pubmed/33005600 http://dx.doi.org/10.3389/fchem.2020.00690 Text en Copyright © 2020 Farzin, Johnson, Chatterjee, Zamani and Dishari. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Farzin, Seefat Johnson, Tyler J. Chatterjee, Shyambo Zamani, Ehsan Dishari, Shudipto K. Ionomers From Kraft Lignin for Renewable Energy Applications |
title | Ionomers From Kraft Lignin for Renewable Energy Applications |
title_full | Ionomers From Kraft Lignin for Renewable Energy Applications |
title_fullStr | Ionomers From Kraft Lignin for Renewable Energy Applications |
title_full_unstemmed | Ionomers From Kraft Lignin for Renewable Energy Applications |
title_short | Ionomers From Kraft Lignin for Renewable Energy Applications |
title_sort | ionomers from kraft lignin for renewable energy applications |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480228/ https://www.ncbi.nlm.nih.gov/pubmed/33005600 http://dx.doi.org/10.3389/fchem.2020.00690 |
work_keys_str_mv | AT farzinseefat ionomersfromkraftligninforrenewableenergyapplications AT johnsontylerj ionomersfromkraftligninforrenewableenergyapplications AT chatterjeeshyambo ionomersfromkraftligninforrenewableenergyapplications AT zamaniehsan ionomersfromkraftligninforrenewableenergyapplications AT disharishudiptok ionomersfromkraftligninforrenewableenergyapplications |