Cargando…

An advanced molecularly imprinted electrochemical sensor for the highly sensitive and selective detection and determination of Human IgG

An advanced molecularly imprinted electrochemical sensor with high sensitivity and selectivity for the detection of Human immunoglobulin G (IgG) was successfully constructed. With acrylamide imprinting systems, surface imprinting on the nanoparticles CuFe(2)O(4) targeted at IgG was employed to prepa...

Descripción completa

Detalles Bibliográficos
Autores principales: Axin Liang, A., Huipeng Hou, B., Shanshan Tang, C., Liquan Sun, D., Aiqin Luo, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480476/
https://www.ncbi.nlm.nih.gov/pubmed/32950847
http://dx.doi.org/10.1016/j.bioelechem.2020.107671
Descripción
Sumario:An advanced molecularly imprinted electrochemical sensor with high sensitivity and selectivity for the detection of Human immunoglobulin G (IgG) was successfully constructed. With acrylamide imprinting systems, surface imprinting on the nanoparticles CuFe(2)O(4) targeted at IgG was employed to prepare molecularly imprinted polymer, which served as recognition element for the electrochemical sensor. Furthermore, the sensor harnessed a molybdenum disulfide (MoS(2))@nitrogen doped graphene quantum dots (N-GQDs) with ionic liquid (IL) nanocomposite for signal amplification. Under optimized experimental conditions, the sensor shortened the response time to less than 8 min, and the response was linear at the IgG concentration of 0.1–50 ng·mL(−1) with a low detection limit of 0.02 ng·mL(−1) (S/N = 3). Our findings suggested that, the sensor exhibited high detectability and long-time stability. The satisfactory results of human serum sample analysis showed that the developed IgG sensor had promising potential clinical applications in detecting IgG content.