Cargando…

Contributions of immune cell populations in the maintenance, progression, and therapeutic modalities of glioma

Immunotherapies are becoming a promising strategy for malignant disease. Selectively directing host immune responses to target cancerous tissue is a milestone of human health care. The roles of the innate and adaptive immune systems in both cancer progression and elimination are now being realized....

Descripción completa

Detalles Bibliográficos
Autores principales: Caponegro, Michael D., Miyauchi, Jeremy Tetsuo, Tsirka, Stella E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480949/
https://www.ncbi.nlm.nih.gov/pubmed/32914058
http://dx.doi.org/10.3934/allergy.2018.1.24
Descripción
Sumario:Immunotherapies are becoming a promising strategy for malignant disease. Selectively directing host immune responses to target cancerous tissue is a milestone of human health care. The roles of the innate and adaptive immune systems in both cancer progression and elimination are now being realized. Defining the immune cell environment and identifying the contributions of each sub-population of these cells has lead to an understanding of the immunotherapeutic processes, and demonstrated the potential of the immune system to drive cancer shrinkage and sustained immunity against disease. Poorly treated diseases, such as high-grade glioma, suffer from lack of therapeutic efficacy and rapid progression. Immunotherapeutic success in other solid malignancies, such as melanoma, now provides the principals for which this treatment paradigm can be adapted for primary brain cancers. The central nervous system is complex, and relative contributions of immune sub-populations to high grade glioma progression are not fully characterized. Here, we summarize recent research in both animal and humans which add to the knowledge base of how innate and adaptive immune cells contribute to glioma progression, and outline work which has demonstrated their potential to elicit anti-tumorigenic responses. Additionally, we highlight Neuropilin 1, a cell surface receptor protein, describe its signaling functions in the context of immunity, and point to its potential to slow glioma progression.