Cargando…
Principles of Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND)
Evidence derived from existing health-care data, such as administrative claims and electronic health records, can fill evidence gaps in medicine. However, many claim such data cannot be used to estimate causal treatment effects because of the potential for observational study bias; for example, due...
Autores principales: | Schuemie, Martijn J, Ryan, Patrick B, Pratt, Nicole, Chen, RuiJun, You, Seng Chan, Krumholz, Harlan M, Madigan, David, Hripcsak, George, Suchard, Marc A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481029/ https://www.ncbi.nlm.nih.gov/pubmed/32909033 http://dx.doi.org/10.1093/jamia/ocaa103 |
Ejemplares similares
-
Large-scale evidence generation and evaluation across a network of
databases (LEGEND): assessing validity using hypertension as a case
study
por: Schuemie, Martijn J, et al.
Publicado: (2020) -
Erratum to: Large-Scale Evidence Generation and Evaluation across a Network of Databases (LEGEND): Assessing Validity Using Hypertension as a Case Study
por: Schuemie, Martijn J, et al.
Publicado: (2020) -
Large-scale evidence generation and evaluation across a network of databases for type 2 diabetes mellitus (LEGEND-T2DM): a protocol for a series of multinational, real-world comparative cardiovascular effectiveness and safety studies
por: Khera, Rohan, et al.
Publicado: (2022) -
Comparison of Cardiovascular and Safety Outcomes of Chlorthalidone vs Hydrochlorothiazide to Treat Hypertension
por: Hripcsak, George, et al.
Publicado: (2020) -
Robust empirical calibration of p‐values using observational data
por: Schuemie, Martijn J., et al.
Publicado: (2016)