Cargando…
Multi-task deep learning for cardiac rhythm detection in wearable devices
Wearable devices enable theoretically continuous, longitudinal monitoring of physiological measurements such as step count, energy expenditure, and heart rate. Although the classification of abnormal cardiac rhythms such as atrial fibrillation from wearable devices has great potential, commercial al...
Autores principales: | Torres-Soto, Jessica, Ashley, Euan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481177/ https://www.ncbi.nlm.nih.gov/pubmed/32964139 http://dx.doi.org/10.1038/s41746-020-00320-4 |
Ejemplares similares
-
Editorial: Wearable Devices for Cardiac Rhythm Monitoring
por: Duncker, David, et al.
Publicado: (2022) -
Circadian Rhythm Analysis Using Wearable Device Data: Novel Penalized Machine Learning Approach
por: Li, Xinyue, et al.
Publicado: (2021) -
Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy( )
por: Soto, Jessica Torres, et al.
Publicado: (2022) -
Compressed Deep Learning to Classify Arrhythmia in an Embedded Wearable Device
por: Lee, Kwang-Sig, et al.
Publicado: (2022) -
Sentiment Analysis and Sarcasm Detection using Deep Multi-Task Learning
por: Tan, Yik Yang, et al.
Publicado: (2023)