Cargando…

Long-term application of fertilizer and manures affect P fractions in Mollisol

Application of phosphorus (P), a major plant nutrient, as fertilizer is critical to maintain P level for crop production and yield in most cultivated soils. While, it may impact the dynamics, limited studies have examined the long-term effects of fertilization on P fractions in a soil profile in Mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xinchun, Mahdi, Al-Kaisi, Han, Xiao-zeng, Chen, Xu, Yan, Jun, Biswas, Asim, Zou, Wen-xiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481193/
https://www.ncbi.nlm.nih.gov/pubmed/32908161
http://dx.doi.org/10.1038/s41598-020-71448-2
Descripción
Sumario:Application of phosphorus (P), a major plant nutrient, as fertilizer is critical to maintain P level for crop production and yield in most cultivated soils. While, it may impact the dynamics, limited studies have examined the long-term effects of fertilization on P fractions in a soil profile in Mollisol. A long-term field experiment was conducted at the State Key Experimental Station of Agroecology of the Chinese Academy of Sciences in Hailun county, Heilongjiang Province, China. A sequential fractionation procedure was used to determine the effect of fertilizer (types) treatments including no fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus straw (NPK + S) and pig manure (OM) on fractions of P and their distribution within 0–100 cm soil profiles. Unlike CK treatment, the long-term application of fertilizers increased the concentration and accumulation of total and available P in 0–20 and 0–40 cm soil depths than deeper soils, respectively. The phosphorus activity coefficient (PAC) ranged from 1.5 to 13.8% within 0–100 cm soil depth. The largest PAC value was observed under OM treatment at 0–40 cm soil depth and under NPK + S treatment at 40–100 cm soil depth. The Ca(2)-P and Ca(8)-P concentrations increased significantly by 0.5–7.5 times and 0.5–10.4 times, respectively in OM treatment with the largest value in 0–40 cm soil depth over CK treatment. The Al-P concentration under NPK + S and OM treatments increased throughout the soil profile. The OM treatment increased all Po concentrations in the 0–40 cm soil depth, while NPK and NPK + S treatments increased labile organic P, moderately labile organic P, and highly stable organic P in the 0–20 cm soil depth. Thus, the application of fertilizer and straw, or organic manure may enhance inorganic and organic P pool in a Mollisol in Northeast China. Thus, organic manure application in the subsoil as a potential P source and their impact should be considered in developing management practices and policies regarding nutrient management.