Cargando…
Automated classification of coronary plaque calcification in OCT pullbacks with 3D deep neural networks
Significance: Detection and characterization of coronary atherosclerotic plaques often need reviews of a large number of optical coherence tomography (OCT) imaging slices to make a clinical decision. However, it is a challenge to manually review all the slices and consider the interrelationship betw...
Autores principales: | He, Chunliu, Wang, Jiaqiu, Yin, Yifan, Li, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481437/ https://www.ncbi.nlm.nih.gov/pubmed/32914606 http://dx.doi.org/10.1117/1.JBO.25.9.095003 |
Ejemplares similares
-
Atherosclerotic Plaque Tissue Characterization: An OCT-Based Machine Learning Algorithm With ex vivo Validation
por: He, Chunliu, et al.
Publicado: (2020) -
Coronary Plaque Characterization From Optical Coherence Tomography Imaging With a Two-Pathway Cascade Convolutional Neural Network Architecture
por: Yin, Yifan, et al.
Publicado: (2021) -
The Pullback Equation for Differential Forms
por: Csató, Gyula
Publicado: (2012) -
Pullback Bundles and the Geometry of Learning
por: Puechmorel, Stéphane
Publicado: (2023) -
Multidimensional exactly solvable problems in quantum mechanics and pullbacks of affine co-ordinates on the Grassmannian
por: Losev, A S, et al.
Publicado: (1992)