Cargando…
Genetic and microenvironmental differences in non-smoking lung adenocarcinoma patients compared with smoking patients
BACKGROUND: Non-smoking-related lung adenocarcinoma (LUAD) has its own characteristics. Genetic and microenvironmental differences in smoking and non-smoking LUAD patients were analyzed to elucidate the oncogenesis of non-smoking-related LUAD, which will improve our understanding of the underlying m...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481643/ https://www.ncbi.nlm.nih.gov/pubmed/32953513 http://dx.doi.org/10.21037/tlcr-20-276 |
Sumario: | BACKGROUND: Non-smoking-related lung adenocarcinoma (LUAD) has its own characteristics. Genetic and microenvironmental differences in smoking and non-smoking LUAD patients were analyzed to elucidate the oncogenesis of non-smoking-related LUAD, which will improve our understanding of the underlying molecular mechanism and be of clinical use in the future. METHODS: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) databases were used for clinical and genomic information. Various bioinformatics tools were used to analyze differences in somatic mutations, RNA and microRNA (miRNA) expression, immune infiltration, and stemness indices. GO, KEGG, and GSVA analyses were performed with R. A merged protein-protein interaction (PPI) network was constructed and analyzed. A miRNA-differentially expressed gene network was constructed with miRNet. qRT-PCR was used for validation of 4 most significantly differently expressed genes and 2 miRNAs in tumor samples obtained from 20 pairs of non-smoking and smoking patients. RESULTS: Five hundred and one patients with LUAD were obtained, including 210 in the non-smoking group and 292 in the smoking group. A total of 174 significantly altered somatic mutations were detected, including mutations in tumor protein p53 and epidermal growth factor receptor, which were downregulated in non-smoking-related LUAD. At the RNA level, 231 significantly differentially expressed genes were obtained; 124 were upregulated and 107 downregulated in the non-smoking group. GSVA analysis revealed 42 significant pathways. Other functional and enrichment analyses of somatic mutations and RNA expression levels revealed that these genes were significantly enriched in receptor activity regulation and receptor binding. Differences in microenvironments including immune infiltration (e.g., CD8(+) T cells and resting mast cells) and stemness indices were also found between groups. A 79-pair interaction was found between differentially expressed genes and miRNAs, of which miR-335-5p and miR-34a-5p were located in the center. Twenty-one genes, including vitronectin, neurotensin, and neuronatin, were differentially expressed in both non-smoking LUAD patients and DMSO-treated A549 cells. And the different expression of neurotensin, neuronatin, trefoil factor family2, regenerating family member 4, miR-377-5p, miR-34a were verified with the same tendency in our own samples. CONCLUSIONS: Non-smoking LUAD patients, compared to smokers, have different characteristics in terms of somatic mutation, gene, and miRNA expression and the microenvironment, indicating a diverse mechanism of oncogenesis. |
---|