Cargando…
Augmenting disease maps: a Bayesian meta-analysis approach
Analysis of spatial patterns of disease is a significant field of research. However, access to unit-level disease data can be difficult for privacy and other reasons. As a consequence, estimates of interest are often published at the small area level as disease maps. This motivates the development o...
Autores principales: | Jahan, Farzana, Duncan, Earl W., Cramb, Susanna M., Baade, Peter D., Mengersen, Kerrie L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481717/ https://www.ncbi.nlm.nih.gov/pubmed/32968502 http://dx.doi.org/10.1098/rsos.192151 |
Ejemplares similares
-
Correction to ‘Augmenting disease maps: a Bayesian meta-analysis approach’
por: Jahan, Farzana, et al.
Publicado: (2021) -
Multivariate Bayesian meta-analysis: joint modelling of multiple cancer types using summary statistics
por: Jahan, Farzana, et al.
Publicado: (2020) -
Evaluation of spatial Bayesian Empirical Likelihood models in analysis of small area data
por: Jahan, Farzana, et al.
Publicado: (2022) -
Identification of area-level influences on regions of high cancer incidence in Queensland, Australia: a classification tree approach
por: Cramb, Susanna M, et al.
Publicado: (2011) -
Development of the Australian Cancer Atlas: spatial modelling, visualisation, and reporting of estimates
por: Duncan, Earl W., et al.
Publicado: (2019)