Cargando…

miR-152-3p Affects the Progression of Colon Cancer via the KLF4/IFITM3 Axis

OBJECTIVE: The purpose of this study was to investigate the relationship between miR-152-3p and the KLF4/IFITM3 axis, thereby revealing the mechanism underlying colon cancer occurrence and development, consequently providing a promising target for colon cancer treatment. METHODS: Bioinformatics meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Xiaoyi, Shen, Zhan, Man, Da, Ruan, Hang, Huang, Sha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481932/
https://www.ncbi.nlm.nih.gov/pubmed/32952601
http://dx.doi.org/10.1155/2020/8209504
Descripción
Sumario:OBJECTIVE: The purpose of this study was to investigate the relationship between miR-152-3p and the KLF4/IFITM3 axis, thereby revealing the mechanism underlying colon cancer occurrence and development, consequently providing a promising target for colon cancer treatment. METHODS: Bioinformatics methods were implemented to analyze the differential expression of miRNAs and mRNAs in colon cancer, confirm the target miRNA, and predict the downstream targeted mRNAs. qRT-PCR and Western blot were performed to detect the expression of miR-152-3p, KLF4, and IFITM3. CCK-8 and colony formation assays were conducted for the assessment of cell proliferation, and flow cytometry was carried out for the detection of cell apoptosis. Finally, dual-luciferase reporter gene assay was employed to verify the targeting relationship between miR-152-3p and KLF4. RESULTS: miR-152-3p was highly expressed in colon cancer cells, whereas KLF4 was poorly expressed. Dual-luciferase assay verified that miR-152-3p targeted to bind to KLF4 and suppressed its expression. Moreover, silencing miR-152-3p or overexpressing KLF4 was found to downregulate IFITM3, thereby inhibiting cell proliferation and potentiating cell apoptosis. In rescue experiments, we found that miR-152-3p deficiency decreased the expression of IFITM3 and weakened cancer cell proliferation, and such effects were restored when miR-152-3p and KLF4 were silenced simultaneously. CONCLUSION: In sum, we discovered that miR-152-3p can affect the pathogenesis of colon cancer via the KLF4/IFITM3 axis.