Cargando…

Neural Network-Based Study about Correlation Model between TCM Constitution and Physical Examination Indexes Based on 950 Physical Examinees

PURPOSE: To establish the correlation model between Traditional Chinese Medicine (TCM) constitution and physical examination indexes by backpropagation neural network (BPNN) technology. A new method for the identification of TCM constitution in clinics is proposed, which is trying to solve the probl...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yue, Lin, Bing, Zhao, Shuting, He, Li, Wen, Chuanbiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481996/
https://www.ncbi.nlm.nih.gov/pubmed/32952990
http://dx.doi.org/10.1155/2020/8812678
Descripción
Sumario:PURPOSE: To establish the correlation model between Traditional Chinese Medicine (TCM) constitution and physical examination indexes by backpropagation neural network (BPNN) technology. A new method for the identification of TCM constitution in clinics is proposed, which is trying to solve the problem like shortage of TCM doctor, complicated process, low efficiency, and unfavorable application in the current TCM constitution identification methods. METHODS: The corresponding effective samples were formed by sorting out and classifying the original data which were collected from physical examination indexes and TCM constitution types of 950 physical examinees, who were examined at the affiliated hospital of Chengdu University of TCM. The BPNN algorithm was implemented using the C# programming language and Google's AI library. Then, the training group and the test (validation) group of the effective samples were, respectively, input into the algorithm, to complete the construction and validation of the target model. RESULTS: For all the correlation models built in this paper, the accuracy of the training group and the test group of entire physical examination indexes-constitutional-type network model, respectively, was 88% and 53%, and the error was 0.001. For the other network models, the accuracy of the learning group and the test group and error, respectively, was as follows: liver function (31%, 42%, and 11.7), renal function (41%, 38%, and 6.7), blood routine (56%, 42%, and 2.4), and urine routine (60%, 40%, and 2.6). CONCLUSIONS: The more the physical examination indexes are used in training, the more accurate the network model is established to predict TCM constitution. The sample data used in this paper showed that there was a relatively strong correlation between TCM constitution and physical examination indexes. Construction of the correlation model between physical examination indexes and TCM constitution is a kind of study for the integration of Chinese and Western medicine, which provides a new approach for the identification of TCM constitution, and it may be expected to avoid the existing problem of TCM constitution identification at present.