Cargando…
Adoption of Machine Learning in Intelligent Terrain Classification of Hyperspectral Remote Sensing Images
To overcome the difficulty of automating and intelligently classifying the ground features in remote-sensing hyperspectral images, machine learning methods are gradually introduced into the process of remote-sensing imaging. First, the PaviaU, Botswana, and Cuprite hyperspectral datasets are selecte...
Autores principales: | Li, Yanyi, Wang, Jian, Gao, Tong, Sun, Qiwen, Zhang, Liguo, Tang, Mingxiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482030/ https://www.ncbi.nlm.nih.gov/pubmed/32952545 http://dx.doi.org/10.1155/2020/8886932 |
Ejemplares similares
-
Terrain Characterization via Machine vs. Deep Learning Using Remote Sensing
por: Ewing, Jordan, et al.
Publicado: (2023) -
UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring
por: Parsons, Mark, et al.
Publicado: (2018) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
por: Li, Na, et al.
Publicado: (2018) -
Hyperspectral remote sensing: theory and applications
por: Pandey, Prem Chandra, et al.
Publicado: (2020)