Cargando…
Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota
Prebiotics confer benefits to human health, often by promoting the growth of gut bacteria that produce metabolites valuable to the human body, such as short-chain fatty acids (SCFAs). While prebiotic selection has strongly focused on maximizing the production of SCFAs, less attention has been paid t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482059/ https://www.ncbi.nlm.nih.gov/pubmed/32900799 http://dx.doi.org/10.1128/mBio.00217-20 |
_version_ | 1783580731965964288 |
---|---|
author | Yu, Xiaoqian Gurry, Thomas Nguyen, Le Thanh Tu Richardson, Hunter S. Alm, Eric J. |
author_facet | Yu, Xiaoqian Gurry, Thomas Nguyen, Le Thanh Tu Richardson, Hunter S. Alm, Eric J. |
author_sort | Yu, Xiaoqian |
collection | PubMed |
description | Prebiotics confer benefits to human health, often by promoting the growth of gut bacteria that produce metabolites valuable to the human body, such as short-chain fatty acids (SCFAs). While prebiotic selection has strongly focused on maximizing the production of SCFAs, less attention has been paid to gases, a by-product of SCFA production that also has physiological effects on the human body. Here, we investigate how the content and volume of gas production by human gut microbiota are affected by the chemical composition of the prebiotic and the community composition of the microbiota. We first constructed a linear system model based on mass and electron balance and compared the theoretical product ranges of two prebiotics, inulin and pectin. Modeling shows that pectin is more restricted in product space, with less potential for H(2) but more potential for CO(2) production. An ex vivo experimental system showed pectin degradation produced significantly less H(2) than inulin, but CO(2) production fell outside the theoretical product range, suggesting fermentation of fecal debris. Microbial community composition also impacted results: methane production was dependent on the presence of Methanobacteria, while interindividual differences in H(2) production during inulin degradation were driven by a Lachnospiraceae taxon. Overall, these results suggest that both the chemistry of the prebiotic and the composition of the microbiota are relevant to gas production. Metabolic processes that are relatively prevalent in the microbiome, such as H(2) production, will depend more on substrate, while rare metabolisms such as methanogenesis depend more strongly on microbiome composition. |
format | Online Article Text |
id | pubmed-7482059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-74820592020-09-15 Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota Yu, Xiaoqian Gurry, Thomas Nguyen, Le Thanh Tu Richardson, Hunter S. Alm, Eric J. mBio Research Article Prebiotics confer benefits to human health, often by promoting the growth of gut bacteria that produce metabolites valuable to the human body, such as short-chain fatty acids (SCFAs). While prebiotic selection has strongly focused on maximizing the production of SCFAs, less attention has been paid to gases, a by-product of SCFA production that also has physiological effects on the human body. Here, we investigate how the content and volume of gas production by human gut microbiota are affected by the chemical composition of the prebiotic and the community composition of the microbiota. We first constructed a linear system model based on mass and electron balance and compared the theoretical product ranges of two prebiotics, inulin and pectin. Modeling shows that pectin is more restricted in product space, with less potential for H(2) but more potential for CO(2) production. An ex vivo experimental system showed pectin degradation produced significantly less H(2) than inulin, but CO(2) production fell outside the theoretical product range, suggesting fermentation of fecal debris. Microbial community composition also impacted results: methane production was dependent on the presence of Methanobacteria, while interindividual differences in H(2) production during inulin degradation were driven by a Lachnospiraceae taxon. Overall, these results suggest that both the chemistry of the prebiotic and the composition of the microbiota are relevant to gas production. Metabolic processes that are relatively prevalent in the microbiome, such as H(2) production, will depend more on substrate, while rare metabolisms such as methanogenesis depend more strongly on microbiome composition. American Society for Microbiology 2020-09-08 /pmc/articles/PMC7482059/ /pubmed/32900799 http://dx.doi.org/10.1128/mBio.00217-20 Text en Copyright © 2020 Yu et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Yu, Xiaoqian Gurry, Thomas Nguyen, Le Thanh Tu Richardson, Hunter S. Alm, Eric J. Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota |
title | Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota |
title_full | Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota |
title_fullStr | Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota |
title_full_unstemmed | Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota |
title_short | Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota |
title_sort | prebiotics and community composition influence gas production of the human gut microbiota |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482059/ https://www.ncbi.nlm.nih.gov/pubmed/32900799 http://dx.doi.org/10.1128/mBio.00217-20 |
work_keys_str_mv | AT yuxiaoqian prebioticsandcommunitycompositioninfluencegasproductionofthehumangutmicrobiota AT gurrythomas prebioticsandcommunitycompositioninfluencegasproductionofthehumangutmicrobiota AT nguyenlethanhtu prebioticsandcommunitycompositioninfluencegasproductionofthehumangutmicrobiota AT richardsonhunters prebioticsandcommunitycompositioninfluencegasproductionofthehumangutmicrobiota AT almericj prebioticsandcommunitycompositioninfluencegasproductionofthehumangutmicrobiota |